
Product Form of the Inverse Revisited∗

Péter Tar1 and István Maros1

1 Department of Computer Science and Systems Technology
University of Pannonia, Veszprém, Hungary
tar@dcs.uni-pannon.hu

Abstract

Using the simplex method (SM) is one of the most effective ways of solving large scale real life
linear optimization problems. The efficiency of the solver is crucial. The SM is an iterative
procedure, where each iteration is defined by a basis of the constraint set. In order to speed up
iterations, proper basis handling procedures must be applied.

Two methodologies exist in the state-of-the-art literature, the product form of the inverse
(PFI) and lower-upper triangular (LU) factorization. Nowadays the LU method is widely used
because 120-150 iterations can be done without the need of refactorization while the PFI can
make only about 30-60 iterations without reinversion in order to maintain acceptable numerical
accuracy.

In this paper we revisit the PFI and present a new version that can make hundreds or
sometimes even few thousands of iterations without losing accuracy. The novelty of our approach
is in the processing of the non-triangular part of the basis, based on block-triangularization
algorithms. The new PFI performs much better than those found in the literature. The results
can shed new light on the usefulness of the PFI.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Linear optimization, Simplex method, Basis inverse, Product form of the
inverse

Digital Object Identifier 10.4230/OASIcs.SCOR.2012.64

1 Introduction

Our research aims to revisit the usability and effectiveness of the product form of the inverse
in the simplex method in the light of the technological and algorithmic developments of the
past decades. In Section 2 we present a brief literature overview of the simplex method
and highlight the issues that play a key role in our investigations. These areas are the
basis handling procedures, the property of sparsity and the numerical issues of the solution
algorithm. In Section 3 we present our novel approach with a detailed description of the
processing of the non-triangular part of the basis. In Section 4 a computational study is
given to validate our results. Section 5 contains the conclusions.

∗ This publication/research has been supported by TÁMOP-4.2.2/B-10/1-2010-0025 project.

© Péter Tar and István Maros;
licensed under Creative Commons License NC-ND

3rd Student Conference on Operational Research (SCOR 2012).
Editors: Stefan Ravizza and Penny Holborn; pp. 64–74

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SCOR.2012.64
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

P. Tar and I. Maros 65

2 Literature overview

The history of linear optimization started in the early 1950’s. The problem was originated
by Dantzig [2]. One of the possible formulations of the problem is the standard form

minimize cT x,
subject to Ax = b,

x ≥ 0,

where A ∈ Rm×n; c,x ∈ Rn and b ∈ Rm.
The simplex method gives the global optimum of a linear optimization problem. It also

has a modular structure. Thus, loosely connected parts of the algorithm can be investigated
separately. The simplex method is an iterative algorithm. The state of a simplex iteration
can be described by a basis (B) of the linear equation system. In each iteration one variable
leaves the basis while another one enters. The whole process is started from an initial basis
and ends with an optimal one if it exists.

2.1 Use of the basis in the simplex method
The efficiency of a simplex implementation can be measured by solution times. The total
solution time depends on the number of iterations and the time consumed by one iteration.
In our approach we focused on the time taken by an iteration. In each iteration two types of
operations are necessary to facilitate a basis change:

α = B−1a, (or solve Bα = a for α), (1)
αT = aTB−1, (or solve BT α = a for α), (2)

where B is a basis of matrix A and a is some vector appearing in the algorithm. The
computational effort needed to carry out these computations is significant. This highlights
that the implementation of these two computations has an important influence on the
performance of the simplex method. In the literature two major methods exist to perform
operations with the basis. One is called the product form of the inverse (PFI), which we
investigate in our work, the other is the elimination form (EFI) or lower-upper triangular
(LU) factorization.

The PFI was introduced in [3]. The idea of this approach is to store the inverse of the
basis as the product of special matrices.

B−1 = EmEm−1 . . .E1

B−1
i = EiB−1

i−1, for i = 1, . . . ,m,

where B−1
0 = I and, obviously, B−1

m = B−1

The Ei matrices are called elementary transformation matrices (ETMs). They differ from
the unit matrix in only one column. During a basis change, this form can be updated by
computing a new ETM. If the new basis is B̄, then B̄−1 = EB−1.

The basic simplex operations of (1) and (2) are performed recursively:

α = EmEm−1 . . .E1a (3)
αT = aT EmEm−1 . . .E1 (4)

(3) is called FTRAN (Forward TRANsformation) while (4) is referred to as BTRAN (Backward
TRANsformation).

SCOR’12

66 Product Form of the Inverse Revisited

The LU factorization of the basis in linear programming is presented in [7]. The idea is
based on the triangular decomposition of the basis B = LU, where L is lower and U is upper
triangular matrix. With this approach the FTRAN and BTRAN operations are computed
by forward and backward substitutions. Details are omitted in this paper. The aim of our
research was to investigate the PFI. During simplex iterations both forms (PFI and LU)
can be updated by special formulas, so inversion (or factorization) is not necessary in every
iteration. The update operations are relatively cheap in terms of computational effort.

2.2 Sparsity
Large scale real-life linear optimization problems usually have the property of sparsity. This
means that there are very few non-zeros relative to the total size of the coefficient matrix
A. Experience shows that the average number of non-zero elements in a column is no more
than 10, irrespectively of the size of the problem. During computations a vector can be
transformed in such a way that the number of non-zero elements increases. This phenomenon
is known as fill-in.

Independently of the PFI or LU method, triangular reordering of the basis must be
performed during inversion (or factorization). The benefit of triangularization comes from
sparse computing. It generally means that during inversion (or factorization) of the basis
the number of non-zeros in the resulting inverse (or the LU matrices) can be kept low. In
our work we focus on large-scale problems, thus exploiting sparsity is a key issue.

2.3 Numerical issues
During simplex iterations numerical errors (rounding, truncation and cancellation) can occur
due to the finite precision of the computing architectures. As a general rule, double precision
is used. In course of simplex iterations many additive and multiplicative operations are
performed. As the computation carries on, these errors can add up and reach such magnitudes
that can ruin the results unless numerical errors are handled properly.

As the basis changes numerical values become less accurate. Thus the vectors (like
reduced cost, solution, etc.) computed by FTRAN and BTRAN operations lose accuracy, too.
It can be said that the accuracy of the representation of the basis determines the accuracy
of the resulting vectors. As such, it has a significant effect on choosing the incoming and
outgoing variables. The accuracy of the computations can be controlled by reinversion (or
refactorization) of the basis. This operation involves substantial computational effort.

The simplex algorithm is considered numerically stable if the following properties are
satisfied during the solution process:

The obtained solution is optimal.
The numerical value of the objective value is (not strictly) monotonically improving.
After reinvesion (or refactorization) the basis remains valid. (Numerical problems can
lead to a linearly dependent set of vectors as a basis.)

3 Revisiting the product form of the inverse

Nowadays, the PFI is meant to be less effective than the LU form even if some examples
exist for which PFI is superior. The idea of revisiting the product form emerged during the
development of a simplex solver. We wanted to know the capabilities of the PFI in the light
of recent technological and algorithmic developments. The basic problem with the PFI is
that reinversion is needed after 30-60 iterations to maintain acceptable numerical accuracy,

P. Tar and I. Maros 67

while this can go up to 100-200 if the LU form is used [8]. There were some efforts to create
good PFI, but numerical problems weren’t solved [6, 5].

In our work we focused on building a PFI based method and implementation that can
solve real-life problems without reinverting frequently. We have built a system that can
solve problems (from the netlib collection) using reinversion frequencies (number of iterations
without reinverting) up to 300-3000.

We have implemented and investigated triangularization methods available in the literature
by studying their strengths and weaknesses and also proposed numerical issues to be considered
during the FTRAN and BTRAN operations. We present our approach in the following
sections.

3.1 The inversion process
During inversion elementary transformation matrices are generated from the columns of the
actual basis. An ETM is the result of a pivoting process on the basis. Inversion in product
form can be described as follows.
1. Start with a matrix with known inverse, the identity matrix (I) is a simple choice because

I−1 = I.
2. Replace the columns of I with the columns of the basis, so the updating formula can be

used.
The ETM for the update formula in the ith step can be computed as:

E = [e1, . . . , ei−1,ηi, ei+1, . . . , em]

using

ηi =
[
−v

1
i

vp
i

, . . . ,−v
p−1
i

vp
i

,
1
vp

i

,−v
p+1
i

vp
i

, . . . ,−v
m
i

vp
i

]
vi =B−1

i−1bi,

where bi is column i of B. In practical implementations, after a new ETM is formed, all the
remaining columns are updated by it. In this way, the vi vectors are available for the next
step, there is no need for further computations. While the inverse of a matrix is unique the
product form is not. This flexibility can be utilized to achieve some desirable goals. Column
permutations can be done on the basis in order to create a form, which gives a low fill-in
during the inversion.

3.2 Triangularization method
During inversion the order that we use to replace the columns of I should be selected carefully.
As the remaining columns are updated, the number of non-zeros in vi vectors can increase
as a result of possible fill-ins. After an ETM is generated all remaining vectors must be
updated if they have non-zero elements in the pivot row of the ETM. The other vectors
remain unchanged.

Row and column counts are introduced for the basis to represent the number of non-zeros
in the corresponding rows and columns. These counts can be used to identify the triangular
parts of the basis. The advantage of the triangular parts is that they can be inverted directly
without fill-in and without affecting the remaining part.

Figure 1 demonstrates the non-zero structure of a basis after triangularization.

SCOR’12

68 Product Form of the Inverse Revisited

R M C

R
×

×
× × ×

M

× × ×
× × ×

× × ×
× × × ×

C
× × ×

× × × × ×
× × × × ×

Figure 1 Triangularized form of a basis.

We emphasize that in an efficient implementation the column reordering is done only
logically through a permutation vector. First, the R columns are identified and inverted.
This can be done without fill-in. Next, C columns are identified. After that, the M columns
must be processed (this is the most critical part of the inversion). Finally the C columns are
inverted also without fill-in.

3.3 Processing the non-triangular part
The non-triangular part of the basis plays a key role in both the size and the accuracy of the
inverse. We have identified three requirements to be satisfied during the processing of this
part to obtain a stable inverse.
1. The number of fill-ins must be as low as possible.
2. Beside the number of fill-ins, the number of transformations must also be considered.

If there is no fill-in but the non-zero elements of the basis are transformed many times
with the update formula then their numerical accuracy can deteriorate. Furthermore,
numerical properties must be considered. A well-scaled element can be a better pivot
candidate even if it is a result of more transformations.

3. The distribution of the transformations among the non-zeros is important. The accumula-
tion of numerical errors should be prevented or reduced. If the number of transformations
is low but there are only a few elements which have been transformed many times then the
numerical error accumulated on these specific values can ruin the stability of computations
with the inverse.

During inversion all these properties must be taken care of.
To identify some structure in the non-triangular part (which is also sparse), we can use

block-triangularization. The Tarjan algorithm [9, 4] is appropriate to identify the block
structure. The result is a lower block-triangular form where non-zero elements are permuted
into the diagonal. The block-triangular form can reveal hidden triangularity of the basis.
This satisfies the first requirement of a stable inverse.

Each block containing more than one column cannot be inverted without numerical
transformations. It is important to notice that if pivot elements are chosen within the blocks
then numerical transformations must be done only on the columns of the corresponding
block. So, numerical errors can not overflow from one block to another. This prevents the
adding up of numerical errors throughout the whole non-triangular part thus satisfying the
third requirement of a stable inverse.

P. Tar and I. Maros 69

After running the Tarjan algorithm threshold pivoting can be used to identify the pivot
positions within the blocks. This criterion selects a subset from the eligible pivot elements.
Threshold pivoting must select a pivot element within a non-triangular block satisfying

|vi
j | ≥ umax{|vk

j |}, (5)

where u is an adjustable parameter and vj is the investigated vector. The value 0.01 for u is
appropriate in most cases. From the elements satisfying equation (5) one with the lowest
row count is chosen for pivoting, thus the number of necessary updates is kept low.

This criterion hopefully gives an eligible numerical value for the pivot element to maintain
accuracy. In special cases it can happen that the only possible choice left in a column is
an element of small magnitude. Choosing a too small element as a pivot can result in an η
vector with large elements because the elements of the vector v are divided by the pivot. If
the η vector contains large elements then the small numerical errors arising from the finite
precision can scale up to the magnitude of “normal” values. In the worst case the only
possibility for the algorithm can be to choose a numerical garbage as a pivot element. Both
can ruin the inversion procedure and lead to wrong basis changes. As a result of wrong
choices after the next reinversion the simplex algorithm usually falls back to phase-1 or the
objective value gets much worse.

The threshold pivoting criterion works well if the candidate set contains good elements.
Therefore, the pivoting algorithm should take care of this. We have proposed and implemented
a heuristic extension for processing the non-triangular part. We consider the number of
non-zeros in the columns of a non-triangular block and order the columns with increasing
column counts. After that the threshold pivoting procedure is called for the column with
the lowest column count. Thus columns having a few non-zeros are pivoted first, preventing
them to add up numerical errors on their non-zeros. Columns with higher column counts
have numerical advantages in case of threshold pivoting because there is a wider range of
non-zeros to be chosen for pivot elements. With this extension the balance between the
number of updates and the numerical stability satisfies the second requirement of a stable
inverse.

A comprehensive study on the efficiency of the reordering is shown in Section 4.

3.4 Improving numerical stability during computations
Additive operations must be performed during FTRAN, BTRAN and column updating.
These operations are the main sources of numerical problems. It can happen that the
difference of differently transformed, but algebraically identical quantities is a small number
but not zero. In such a case the numerical garbage must be eliminated. We can introduce a
relative tolerance (εr) and say that if the result of an additive operation is smaller than the
absolute value of the larger one multiplied by the tolerance then the result can be considered
zero (6). Using this technique improves the numerical properties of the algorithm.

a+ b =
{

0, if |a+ b| < εr max{|a|, |b|},
a+ b, otherwise.

(6)

During additive operations serious cancellation errors can occur. The resulting inaccurate
values can scale up significantly in subsequent operations. To reduce the probability of this
to happen (e.g., during computing dot products) we collect the positive and negative terms
separately and add them up at the end. Similarly, we need to be cautious in case of logical
(comparison) operations on two numbers. If equality is tested then absolute tolerance (εa) is

SCOR’12

70 Product Form of the Inverse Revisited

also used. If the absolute value of the numbers difference is under the tolerance they are
considered to be equal.

Both techniques have been implemented and used in our simplex solver. Now we use
10−10 for the relative tolerance and 10−14 for the absolute tolerance. The pivoting method is
extended with a tolerance too, all pivot elements must be over 10−6 in absolute value.

4 Computational results

We have performed a computational study of our PFI implementation. For the tests we used
the netlib collection. In Table 1 we present a subset of these problems which we use to present
the findings. The chosen subset contains representatives of the sizeable and numerically more
difficult problems. Problems DFL001, QAP12 and QAP15 are omitted because currently our
implementation uses the primal algorithm only and these problems can be handled more
effectively with the dual.

Table 1 Test problem set from the netlib collection.

Problem name Rows Columns Non-zeros Density
25FV47 822 1571 11127 0.86%
80BAU3B 2263 9799 29063 0.13%
BNL2 2325 3489 16124 0.19%

D2Q06C 2172 5167 35674 0.31%
DEGEN3 1504 1818 26230 0.95%
FIT2D 26 10500 138018 50.55%
FIT2P 3001 13525 60784 0.14%

GREENBEA 2393 5405 31499 0.24%
GROW22 441 946 8318 1.99%

MAROS-R7 3137 9408 151120 0.51%
PILOT 1442 3652 43220 0.82%
PILOT87 2031 4883 73804 0.74%
QAP08 913 1632 8304 0.55%

STOCFOR3 16676 15695 74004 0.02%
TRUSS 1001 8806 36642 0.41%

WOOD1P 245 2594 70216 11.04%

All the following results have been obtained on a personal computer with Intel(R)
Core(TM)2 Duo E8400@3.0Ghz, 2GB RAM running 32bit Windows 7. The simplex imple-
mentation of our research group is named after the university, it is called Pannon Optimizer
(PanOpt). It is important to note that the following results have been reached by using the
following settings:

Presolve techniques are not used.
Scaling techniques are not used.
Advanced starting basis finder techniques are not used. Every solution is obtained from
the lower logical starting basis.
Dantzig full pricing is used. This heavily effects the number of iterations needed to obtain
the optimal solution.
All these properties affect the solution time, thus our solution times published are worse
than commercial solvers but they can serve as a basis for comparison. The computed
optimal solutions have been validated using the COIN-OR CLP software [1].

P. Tar and I. Maros 71

4.1 Study of the efficiency of column reordering
In this section the numbers of non-zero transformations are analyzed. Two measurements
are used for comparison. Both use the lower block-triangular form generated by the Tarjan
algorithm. The measurements are done using a reinversion frequency of 60. During the
tests the averages of transformations are computed. Solution times are analyzed in the next
section.

The results are shown in Table 2. The first set of measurements is generated using
threshold pivoting within the blocks of the block-triangular form, considering the column
order given by the Tarjan algorithm. The second set of measurements is generated using
threshold pivoting with the reordering of columns based on the column counts. The table
also shows the reduction achieved in the number of transformations.

Table 2 Inversion statistics on average transformation numbers per inversion.

Problem name Average number of transformations per inversion Reduction
Without reordering Reordered

25FV47 199757 130262 34.79 %
80BAU3B 386 291 24.40 %
BNL2 14782 8372 43.36 %

D2Q06C 1371770 739189 46.11 %
DEGEN3 237036 163321 31.10 %
FIT2D 4545 4033 11.26 %
FIT2P 215598 201894 6.36 %

GREENBEA 37640 15372 59.16 %
GROW22 196210 44865 77.13 %

MAROS-R7 211474 235210 -11.22 %
PILOT 11508000 10360700 9.97 %

PILOT87 47395100 36729000 22.50 %
QAP08 3859540 2387350 38.14 %

STOCFOR3 1457 1349 7.37 %
TRUSS 295365 270876 8.29 %

WOOD1P 30702 28133 8.37 %

The table clearly shows that reordering reduces the number of transformations required
to compute the product form of the inverse in most cases. It can happen that the sequence of
bases is different in these two cases because the numerical properties of the basis can produce
numerically different reduced costs, thus the pricing strategy may choose different variables
to enter the basis. This happened during the solution of MAROS-R7 in the reordered case.
Bases with larger non-triangular parts have been obtained throughout the solution process.

The computation of the FTRAN and BTRAN operations become faster, too, because
the resulting inverse usually has fewer non-zeros than it has in the general case. Reordering
can be done very quickly because the column counts are directly available. It is important
to note that the column reordering has other advantageous features. Most importantly, it
provides a numerically more stable inverse, so reinversion frequency can be increased.

4.2 Investigating reinversion frequencies
In the literature the main problem with the PFI is that reiversion must be performed
too frequently. Reinversion frequency of 30-60 is advised to be used. In this section we

SCOR’12

72 Product Form of the Inverse Revisited

demonstrate the stability of our inversion process by increasing the reinversion frequency.
This gives a substantial reduction in solution time if a problem cannot be triangularized well.
Measurements have been made using both variants of the algorithm.

In Table 3 the test set with reinversion frequencies of 60, 120 and 300 and 1200 is
presented without using the column ordering technique. In Table 4 the same measurements
are shown with the reordering variant. The “Improvement” column shows comparison of the
best solution time relative to the column of 60, which is said to be the maximal advised value.
It is important to note that the column of 60 in Table 4 is already better (in most cases)
than the same column in Table 3. This observation makes it clear that total improvement
achieved by reordering combined with an increased reinversion frequency is more than the
“Improvement”. This result is shown in the “Total improvement” column.

The results clearly show that significantly more iterations can be done without reinverting
than advised. Our method seems to be numerically stable. We can solve nearly all netlib
problems with the current (“work in progress”) version of PanOpt. Even PILOT and
PILOT87, which are known to be numerically hard problems, can be solved with doing more
than a hundred iterations in a row using the reordering variant. Remember, scaling is not
used on the matrix, which proves that the numerical difficulties of the problems are handled
properly by the inversion process and the FTRAN, BTRAN implementations.

Problem STOCFOR3 has a very good structure. Its non-triangular part and its average
transformation count during inversion are relatively small in contrast to the problem size,
thus the inversion process is fast. Unfortunately, as the sequence of ETMs representing the
inverse gets longer, the BTRAN and FTRAN operations slow down and become less accurate.
For such problems frequent reinversion is beneficial.

On the other hand, QAP08 and PILOT87 are extremely non-triangular, their transform-
ation average is very high. Therefore, creating the inverse of the bases of these problems
takes significant amount of time. Such problems benefit from more frequent reinversions as
it can be seen in the “Improvement” columns.

It is also interesting to compare Tables 3 and 4. It shows that the reordering method
generally decreases solution times. For PILOT using a reinversion frequency of 1200 solution
cannot be obtained without column reordering because serious numerical problems occurred.
On the other hand, with the reordered variant solution can be obtained for PILOT87 (1951.971
seconds) with reinverting only after 3000 iterations. Such results with the PFI have not been
published yet.

5 Conclusions

In our work we have revisited the product form of the inverse for the simplex method. We
have introduced a technique, which is appropriate to process the non-triangular part of the
basis. The novelty of our approach is based on the block-triangular form. Our approach
reorders the columns within each block based on the number of non-zeros in the columns.
The threshold pivoting procedure is applied after reordering. In this way the resulting inverse
is stable enough to be updated for hundreds or thousands of iterations and also solution
times are reduced. We have implemented our method and presented a computational study
to prove its efficiency.

We also have some further improvement ideas for the PFI. These ideas aim the further
reduction of the number of transformations necessary to carry out inversions. Hopefully,
stability will be further increased while the transformation count and solution time reduced.
Any success will be reported in the future.

P. Tar and I. Maros 73

Table 3 Solution times with different reinversion frequencies (without reordering).

Problem Solution time (sec) using Best Improve-
name reinversion frequency case ment

60 120 300 1200
25FV47 15.581 12.667 18.735 48.670 12.667 18.70 %
80BAU3B 5.617 6.294 5.529 10.317 5.529 1.57 %
BNL2 9.617 12.365 14.685 63.884 9.617 0.00 %

D2Q06C 240.290 257.150 275.087 634.711 240.290 0.00 %
DEGEN3 26.811 27.299 33.402 67.905 26.811 0.00 %
FIT2D 24.774 24.619 25.271 28.135 24.619 0.63 %
FIT2P 114.350 132.001 191.432 680.007 114.350 0.00 %

GREENBEA 42.721 36.335 48.179 143.892 36.335 14.95 %
GROW22 1.067 0.947 1.024 2.178 0.947 11.25 %

MAROS-R7 28.116 23.214 24.114 37.175 23.214 17.43 %
PILOT 541.016 353.776 579.610 Error 353.776 34.61 %

PILOT87 3225.252 1988.138 1225.894 1308.544 1225.894 61.99 %
QAP08 68.090 40.026 44.149 84.112 40.026 41.22 %

STOCFOR3 58.828 63.529 87.504 217.524 58.828 0.00 %
TRUSS 35.959 23.461 31.171 60.112 23.461 34.76 %

WOOD1P 0.915 0.963 0.927 1.071 0.915 0.00 %

Table 4 Solution times with different reinversion frequencies (with reordering).

Problem Solution time (sec) using Best Improve- Total

name reinversion frequency case ment improve-
60 120 300 1200 ment

25FV47 11.604 10.957 13.553 46.733 10.957 5.58 % 29.68 %
80BAU3B 5.588 5.172 5.564 8.057 5.172 7.44 % 7.92 %
BNL2 10.576 12.386 13.770 51.131 10.576 0.00 % -9.97 %

D2Q06C 178.310 152.192 217.553 557.962 152.192 14.65 % 36.66 %
DEGEN3 23.746 20.659 25.053 74.886 20.659 13.00 % 22.95 %
FIT2D 24.477 24.788 25.106 28.156 24.477 0.00 % 1.20 %
FIT2P 126.502 117.152 188.609 736.908 117.152 7.39 % -2.45 %

GREENBEA 26.952 30.919 46.467 116.071 26.952 0.00 % 36.91 %
GROW22 0.858 0.928 0.948 2.150 0.858 0.00 % 19.59 %

MAROS-R7 28.019 23.887 24.230 37.412 23.887 14.75 % 15.04 %
PILOT 517.893 307.454 277.950 402.567 277.950 46.33 % 48.62 %

PILOT87 2884.267 1517.950 1089.021 1205.336 1089.021 62.24 % 66.23 %
QAP08 60.738 34.163 28.481 68.982 28.481 53.11 % 58.17 %

STOCFOR3 58.952 63.318 87.061 218.299 58.952 0.00 % -0.21 %
TRUSS 25.518 24.662 28.309 59.582 24.662 3.35 % 31.42 %

WOOD1P 0.815 0.882 0.873 1.332 0.815 0.00 % 10.93 %

SCOR’12

74 Product Form of the Inverse Revisited

Acknowledgments We would like to thank our colleagues for their work in the implement-
ation of other modules of Pannon Optimizer. This publication/research has been supported
by the TÁMOP-4.2.2/B-10/1-2010-0025 project.

References
1 COIN-OR Linear Optimization Solver. http://www.coin-or.org/projects/Clp.xml.
2 G.B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.

In T.C. Koopmans, editor, Activity analysis of production and allocation, pages 339–347.
Wiley, New York, 1951.

3 George B. Dantzig and Wm. Orchard-Hays. The product form for the inverse in the simplex
method. Mathematical Tables and Other Aids to Computation, 8(46):64–67, 1954.

4 I. S. Duff and J. K. Reid. An implementation of Tarjan’s algorithm for the block triangular-
ization of a matrix. ACM Transactions on Mathematical Software (TOMS), 4(2):137–147,
1978.

5 A. M. Erisman, R. G. Grimes, J. G. Lewis, and Jr. W. G. Poole. A structurally stable modi-
fication of Hellerman-Rarick’s P4 algorithm for reordering unsymmetric sparse matrices.
SIAM Journal on Numerical Analysis, 22(2):369–385, 1985.

6 E. Hellerman and D. Rarick. The partitioned preassigned pivot procedure (P4). In Sparse
matrices and their applications, pages 67–76. Plenum Press, 1972.

7 Harry M. Markowitz. The elimination form of the inverse and its application to linear
programming. Management Science, 3(3):255–269, 1957.

8 I. Maros. Computational Techniques of the Simplex Method. Kluwer Academic Publishers,
Norwell, Massachusetts, 2003.

9 R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

http://www.coin-or.org/projects/Clp.xml

	Introduction
	Literature overview
	Use of the basis in the simplex method
	Sparsity
	Numerical issues

	Revisiting the product form of the inverse
	The inversion process
	Triangularization method
	Processing the non-triangular part
	Improving numerical stability during computations

	Computational results
	Study of the efficiency of column reordering
	Investigating reinversion frequencies

	Conclusions

