
19
86

A
J

 9
1.

12
44

G

THE ASTRONOMICAL JOURNAL VOLUME 91, NUMBER 5 MAY 1986

A PATTERN-MATCHING ALGORITHM FOR TWO-DIMENSIONAL COORDINATE LISTS

Edward J. Groth
Physics Department, Jadwin Hall, Princeton University, Princeton, New Jersey 08544

Received 31 December 1985; revised 28 January 1986

ABSTRACT

A pattern-matching algorithm for two-dimensional coordinate lists is described. The algorithm matches
pairs of coordinates in two lists based on the triangles that can be formed from triplets of points in each
list. The algorithm is insensitive to coordinate translation, rotation, magnification, or inversion and can
tolerate random errors or distortions.

I. INTRODUCTION

A problem that arises frequently involves matching points
found in two lists of two-dimensional coordinates where the
coordinate systems are not the same and the matching must
be based on the identification of similar geometrical configu-
rations of points in both lists. An algorithm is described that
will accomplish such matching automatically, provided the
two lists have a sufficient number of points in common, the
distortion between the coordinate systems is not too severe,
and the random coordinate errors are not too large. The
algorithm is completely insensitive to any translation, rota-
tion, magnification, or inversion between the two coordinate
systems. The algorithm was developed to solve a particular
problem in astronomical data analysis but should have appli-
cation to a variety of problems in image processing.

The astronomical problem involves the determination of
stellar positions. From a photograph of a region of the sky,
the positions of a number of stars are measured. Of course,
these coordinates are in the system of the measuring engine.
The celestial coordinates (equivalent to latitude and longi-
tude) of the brighter stars are listed in a catalog. By identify-
ing the measured stars with the catalog stars, the transfor-
mation from the measuring-engine system to the celestial
system can be determined and used to calculate celestial
coordinates for all measured stars. The algorithm described
below performs the identification step and is similar to the
actions performed by an astronomer when attempting to vis-
ually match two photographs of the same region of the sky.
The astronomer looks for similar triangles among the bright
stars.

The objective of the algorithm is not to match all points in
two lists of arbitrary size. If this is the application, as it is in
the astronomical example mentioned above, the algorithm is
applied to a subset (—20 points) of each list. From the
matches found, a coordinate transformation is derived and
used to place both lists in the same coordinate system. Other
points in the lists can then be matched by conventional tech-
niques, e.g., by matching points that are sufficiently close.

In Sec. II below, the algorithm is described, while in Sec.
Ill some examples of its application are presented. These
examples serve to illustrate and quantify some of the state-
ments made in Sec. II.

II. THE ALGORITHM

The algorithm contains several major steps: selecting the
points to be matched, generating lists of triangles, matching
the triangles, reducing the number of false matches, assign-
ing matched points, and protecting against spurious assign-
ments. Each of these is described in turn.

a) Selecting The Points To Be Matched

The first steps in the algorithm involve constructing the
two lists that are to be matched. The algorithm provides for a
tolerance e in the precision to which points are matched. If
two points in a list are closer than e, then either could poten-
tially be matched with the same point in the other list. This is
clearly a confusing situation and all pairs closer than an
elimination threshold é¡ are eliminated from each list. Both e
and £ are user-specified parameters, but typical defaults are
€ = 0.001 and Ç = 36, where € has been expressed in units
such that the coordinates occupy the interval [0,1] in each
dimension. This step also eliminates duplicates which would
lead to divide-by-zero errors if allowed to remain.

As will be seen below, some steps in the algorithm require
computation time proportional to a high power of n, the
number of elements in either list, so it is important to reduce
the size of each list. For a typical minicomputer, n in the
range 20-30 is a manageable number. In the case of the as-
tronomical problem, the n brightest stars in each list can be
selected. For other applications, other selection criteria may
be appropriate. With some applications, it is possible that
lists of unequal length may provide a higher probability of
obtaining matches. The algorithm does not require that the
lists be of equal length, but the following description and
example are based on lists of the same length.

b) Generating Triangle Lists

Once the lists have been constructed, a list of triangles is
generated for each list of points. Initially, the triangle lists
include all possible triangles formed from any three points as
vertices and contain the following information for each tri-
angle: the three points forming the vertices arranged so that
the side between vertices 1 and 2 is the shortest side, the side
between vertices 2 and 3 is the intermediate side, and the side
between vertices 3 and 1 is the longest side; the logarithm of
the perimeter of the triangle; the orientation—whether ver-
tices 1,2, and 3 are traversed in a clockwise or counterclock-
wise sense; the ratio of the longest side to the shortest side;
the tolerance in the ratio; the cosine of the angle at vertex 1;
and the tolerance in the cosine.

The angle at vertex 1 could be used in place of the cosine at
vertex 1. If the angle were measured in a definite sense such
as counterclockwise from the shortest to the longest side, it
would carry the information about the sense of vertex tra-
versal. In order that the algorithm be independent of coordi-
nate inversion, the angle comparisons would have to be
made after folding the angles into the interval 0°-l 80°. Deter-
mining the sense of a triangle match (Sec. c below) would

1244 Astron. J. 91 (5), May 1986 0004-6256/86/051244-05S00.90 © 1986 Am. Astron. Soc. 1244

© American Astronomical Society • Provided by the NASA Astrophysics Data System

19
86

A
J

 9
1.

12
44

G

1245 EDWARD J. GROTH: PATTERN-MATCHING ALGORITHM 1245

require numeric comparison of angles rather than logical
comparison of the directions of vertex traversal. The evalua-
tion of the cosine and its tolerance [Equations (5) and (6)
below] requires nothing more complicated than a square
root, while trigonometric functions would be required to
deal with the angle. For these reasons, the algorithm design
is based on the sense of vertex traversal and the cosine of the
angle at vertex 1, rather than the angle itself.

The tolerances in the ratios and cosines are computed by
treating the matching tolerance e as an independent error in
each coordinate and propagating these errors through the
expressions for the ratio and cosine. In particular, if
(X2,y2), and (x3,y3) are the coordinates of vertices 1, 2, and
3, then the ratio is given by

R — r3//*2, (1)
where

= -y/A*! + Ayf, Ax3 = - xv Ay3 =y3 (2)

r2 = yfKxf+ Ayf, Ax2 = *2 - Ay2 =y2-yv (3)

and the tolerance in R is

A =2*V| (4)

where C is the cosine of the angle at vertex 1. C and its
tolerance are given by

C = (Ajc3 Ax2 + Ay34y2)/r3r2, (5)

= 2S2e2(—
U ^r2 ri i)

+ 3C2-4

(i
(6)

where S is the sine of the angle at vertex 1.
Triangles whose ratio is too large are discarded from the

lists. The ratio limit is a user-specified parameter; a typical
limit is 10. The reason for this step is that a triangle with a
large ratio often has a large ratio tolerance produced by a
very close pair of vertices. As a consequence, many triangles
in the other list must be examined in order to find a match,
and even when a match is found, it is not likely to be a reliable
match. With a ratio limit of 10, the number of triangles is
reduced by a few percent, while the decrease in computation
time due to the reduction in the number of triangles that
must be searched is about a factor of 2.

c) Matching Triangles

The two lists of triangles are compared and matching tri-
angles are identified whenever

(Ra ~ Rb)2 <Íra + Írb> (7)
and

(^A ^b)2<^CA (8)
where the subscripts A and B refer to the two lists. In the
event that more than one triangle in list B matches a triangle
in list A according to criteria (7) and (8), the closest is
chosen. By construction, this procedure generates the same
list of matched triangles independent of any translation, ro-
tation, magnification, or inversion between the A and B co-
ordinate systems.

Matching is accomplished with a procedure similar to
those used in sort-merge algorithms. Both lists are sorted in

order of increasing ratio and the maximum ratio tolerance is
determined for each list. Successive triangles are selected
from list A and compared with a range of triangles from list
B. Since the lists are sorted, the end of the range (for a given
triangle from list A) occurs when an i?B is encountered that
is too large to satisfy criterion (7) even when the maximum
tolerances are used. Similarly, the start of the range is updat-
ed (for the next triangle from list A) to the first RB that is
just large enough to satisfy criterion (7) with the maximum
tolerances. With this procedure, it is not necessary to com-
pare every triangle in list A with every triangle in list B but
only those within a range of RB proportional to e.

Triangles may be matched in the same or opposite senses;
that is, if both triangles of a matched pair have clockwise or
both have counterclockwise orientations, the pair have the
same sense, otherwise they have the opposite sense.

The procedure generates both true and false matches. If
the three pairs of matching vertices in a matched pair of
triangles contain points that actually correspond, then the
match is a true match, otherwise a false match. Assuming
the points are randomly distributed, an estimate of the num-
ber of false matches can be obtained by the following argu-
ment. If there are n points in each list, there are nt

= n(n — 1) (/z — 2)/6 triangles and 12«J potential matches
(there are six ways to match the vertices and two ways to
match the orientations of a pair of triangles). Consider a
triangle from list A with vertices 1, 2, and 3 and a triangle
from list B with vertices T, 2', and 3'. Conceptually perform
a coordinate transformation on the A triangle so vertices 1
and 2 line up exactly with vertices 1' and 2'. The algorithm
finds these triangles to match (for this particular arrange-
ment of vertices and orientation) if vertex 3 is close enough
to vertex 3;. The ratio and cosine tolerances are constructed
by assuming a tolerance of + 6 in each coordinate, so it is to
be expected that the triangles match if vertex 3 falls within a
square of side le centered on vertex 3\ The probability of
this event is 4e2, so the average total number of false matches
is 48«Je2. This is an approximate calculation and two effects
have been ignored: edge effects and the fact that vertices 1
and T and vertices 2 and T need match only to within the
tolerance. Edge effects reduce the number of false matches
slightly, while tolerances at the other vertices increase the
number of matches. Both effects are difficult to calculate
analytically, so the adopted expression for the number of
false matches is

nf = 4Sfny, (9)

where /is a factor to be determined but may be expected to be
in the range 2-3. Since nt is the upper limit to the number of
matches, Equation (9) can only be applied when it predicts
nf<nt.

Since the number of triangles is roughly proportional to
«3, it might be thought that the computation required for the
triangle-matching procedure is proportional to n6. Since not
all triangles in list B are compared with all triangles in list A,
the matching procedure described above requires computa-
tion proportional to n6e. For fixed e, the computation is still
proportional to n6. Equation (9) shows that as n increases, e
must decrease in proportion to «-3/2 in order that the true
matches not be swamped by the false matches, so the re-
quired computation is proportional to «4 5.

d) Reducing The Number of False Matches

The next step is the elimination of as many false matches

© American Astronomical Society • Provided by the NASA Astrophysics Data System

19
86

A
J

 9
1.

12
44

G

1246 EDWARD J. GROTH: PATTERN-MATCHING ALGORITHM 1246

as possible. For this purpose, the previously computed loga-
rithms of the perimeters are used. For a matched pair of
triangles,

logPa, - togpB = log M, (10)
where pA is the perimeter of the triangle in list A, pB is the
perimeter in list B, and A/represents the magnification of the
coordinates between list B and list A. The magnifications for
all the true matches are essentially the same, while those for
the false matches have a broad distribution. The average
log M and the standard deviation of the log M distribution
are computed. Any match whose log A/ differs from the
average by more than a factor times the standard deviation is
discarded and the procedure is iterated until no more
matches are discarded (the usual case), a preset iteration
limit is reached, or all matches are discarded (in this case it is
declared that the lists cannot be matched). The factor that
multiplies the standard deviation is determined as follows.
Let the number of same-sense matches (i.e., both triangles
have the same orientation) be «+ and the number of oppo-
site-sense matches be Since all true matches must be
entirely the same sense (when there is no coordinate inver-
sion between lists A and B) or entirely the opposite sense,
estimates of the number of true and false matches can be
obtained from

mt = \n+ — n_\, (11)

mf = n++n_—mt. (12)

Then if the factor is 1; if 0.1/^ > mfi the factor is 3;
and in between the factor is 2. This procedure begins by
discarding many matches but discards very few once mt be-
comes comparable with mf. Finally, the remaining opposite-
sense matches are discarded if n+ > «_, or the same-sense
matches are discarded if n_>n + .

e) Assigning Matched Points

At the end of the discard step there are still false matches,
so it is not possible to take all pairs of points contained in the
remaining matched triangles as matched points. Instead, the
matched triangles are used to “vote” for matched points.
Each matched triangle casts three votes—one for each pair
of vertices. After all the votes are cast, the vote array is sorted
from maximum vote to minimum vote. If no pair of points
received more than one vote, it is declared that the list cannot
be matched. Otherwise, successive pairs of points in the sort-
ed array are assigned as matched pairs until one of three
events occurs: the vote drops by a factor of 2, an attempt is
made to assign a point that has already been assigned, or the
vote drops to zero. The first event is the usual way assign-
ments terminate when true matches have been found. This
arises because points that are true matches are involved in
many matched triangles and receive a large number of votes.
On the other hand, a pair of points that do not match are
contained in only a few of the (incorrectly) matched trian-
gles and receive a small number of votes.

f) Protecting Against Spurious Assignments

The algorithm just described works quite well when the
two lists contain a reasonable number of points in common.
On the other hand, the algorithm almost always finds a few
matches, even when the lists have no points in common. To
guard against this possibility, the entire procedure is repeat-
ed, beginning with the triangle generation step, but using

only those points that were found to match in the first at-
tempt. If fewer matches are found, then it is assumed that the
original matches were false, and it is declared that the two
lists cannot be matched. (This step is omitted if all points in
the original lists were matched.)

III. EXAMPLES AND APPLICATIONS

The examples in this section are taken from the astro-
nomical application mentioned in the introduction. A pho-
tograph of the sky was digitized on a 3150x3150 square
grid. Positions and intensities of several thousand stars were
computed from the digitized data. However, the positions
are in units of digitizer pixels, and it is required to transform
them to celestial coordinates. The positional accuracy for
the brighter stars is about + 0.06 pixels.

With knowledge of the approximate size and celestial co-
ordinates of the center of the photograph, stars were selected
from a catalog of bright stars with known coordinates. This
yielded 165 stars. The celestial coordinates were projected
onto a rectangular grid with origin at the approximate field
center. The units are arcseconds and the range of “catalog”
coordinates is ± 12 000 arcsec with typical accuracies of
±0.3 arcsec.

To determine the transformation from pixel coordinates
to celestial coordinates, the catalog stars are identified with
data stars so a polynomial fit of data coordinates versus cata-
log coordinates can be performed. The pattern-matching al-
gorithm is used to make the first identifications, after which
a preliminary transformation is calculated and additional
identifications are made.

Accordingly, the 25 brightest catalog and data stars were
selected for matching. Since the catalog intensities and data
intensities are determined in different colors it is not expect-
ed that all stars will match.

Figure 1 shows the two sets of 25 stars after the coordinate
transformation has been determined. The 18 stars shown as

Fig. 1. Catalog and data stars used in the example. The data stars have
been transformed to the catalog system. Circles indicate both a catalog
and data star which the algorithm matched. Plusses (+) indicate un-
matched catalog stars and crosses (X) indicate unmatched data stars.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

1247 EDWARD J. GROTH: PATTERN-MATCHING ALGORITHM 1247

h)

Fig. 2. Distribution of cosines and ratios of the
catalog triangles for the example discussed in
the text.

circles were identified by the pattern-matching algorithm.
These are the only identifications possible, as all other data
or catalog stars are well separated from each other.

Figure 2 shows histograms of the ratios and cosines com-
puted for the catalog list. With 25 stars in each list there are
2300 potential triangles in each list. Since triangles with ra-
tios greater than 10 were discarded, the algorithm actually
used 2264 from the catalog list and 2216 from the data list.
From Fig. 2 it appears that a smaller ratio limit would be
acceptable, and indeed the algorithm finds the same matches
even with a limit as low as 2. However, its performance is
marginal, as some matches received barely enough votes (4)

Log Magnification

Fig. 3. Distribution of the logarithms of the magnifications of the
matched triangles for the example discussed in the text. The cross-
hatched histogram is the distribution remaining after false matches were
eliminated.

to be identified. The advantage of a lower ratio limit is a
reduction of computation time in the triangle-matching step,
in this case by almost a factor of 30. The setting of the ratio
limit is a tradeoff between reliable performance and reduced
computation time.

Figure 3 shows the histogram of log M [Eq. (10)] before
and after false matches were discarded. Matching found 602
same-sense and 218 opposite-sense matches. After discard-
ing, there remained 397 same-sense matches of which three
were false: discarding matches based on their magnifications
is a powerful means of eliminating false matches.

Since 820 matches is not negligible compared to 2216 pos-
sible matches, the applicability of equation (9) is question-
able. Nevertheless, if these data are used to estimate/, the
result is 1.8, as shown in the first line of Table I. The other
lines of Table I show the test number 6, the number of false
matches, the number of true matches, and the resulting esti-
mate for/as e is varied over two orders of magnitude. At
large e, the number of false matches becomes comparable
with the number of possible matches, resulting in small esti-
mates of/ At small e, the statistics are poor. Nevertheless,
the trend in Table I allows the conclusion that/~3 is the
appropriate value for equation (9) when small numbers of
false matches are predicted.

Table I also provides insight into the effects of coordinate
distortions on the performance of the algorithm. (For these
data, random coordinate errors are not a problem as they are
always smaller than the smallest € in Table I.) The photo-
graphic data contain distortions which reach 0.0017 (ex-

Table I. Matching as a function of e.

Test False True

0.001
0.00005
0.0001
0.0005
0.002
0.005

426
2
7

150
881

1774

394
11
31

217
479
120

1.8
3.3
2.9
2.5
0.9
0.3

© American Astronomical Society • Provided by the NASA Astrophysics Data System

19
86

A
J

 9
1.

12
44

G

1248 EDWARD J. GROTH: PATTERN-MATCHING ALGORITHM 1248

Rank

Fig. 4. Vote distribution for the example discussed in the text.

pressed in the same units as e) at the edge of the field. For
small e, the algorithm can only match small triangles unaf-
fected by distortion. As € increases, the algorithm is less sen-
sitive to distortion and finds more matches. However, at the
largest e in the table, there are so many false matches that
they begin to overwhelm and hide the true matches. The
choice of € represents a tradeoff between reliable perfor-
mance and the ability to deal with distortions.

Figure 4 shows the vote array resulting from test 1 in Ta-
ble I. There were a total of 1141 votes cast, of which only nine
were for incorrect pairs of points. The incorrect votes came
from three incorrectly matched triangles. Figure 4 illustrates
the point made in Sec. lie that when correct matches are

found there is a very sharp transition in the vote between
correct and incorrect matches.

To test the sensitivity of the algorithm to the fraction of
stars that actually match, test 1 was repeated with the same
conditions except that a subset of the catalog stars were re-
distributed at random over the area of the photograph. The
algorithm found all correct matches and no incorrect
matches with as few as 6 of 25 stars in common. The algo-
rithm failed when there were only 5 of 25 stars in common.
The exact point at which the algorithm fails must depend to
some extent on the data and on the choice of parameters.
These tests indicate that the algorithm can be expected to
work reliably for lists with only 50% of the points in com-
mon and it may work with as few as 25% of the points in
common.

The algorithm was tested with the same measured stars
but with catalog stars selected from a different area of the
sky. In this case no matches are expected and none were
found. No pair of stars received more than one vote.

For the tests described in this section, the algorithm was
implemented in fortran on a VAX 11/750 with the VMS
3.4 operating system. Representative computation times are
taken from test 1 in Table I. The times (in seconds) required
for the several steps of the algorithm were: generating and
sorting the triangle lists, 21.4; matching triangles, 131.7; dis-
carding false matches, 2.6; voting 1.2; and repeating the al-
gorithm on the matches found, 12.2.

IV. CONCLUSION

An algorithm has been presented for matching two-di-
mensional lists of coordinates. The algorithm has been
shown to work well in its intended application and may be of
use in other two-dimensional pattern-matching applica-
tions.

I thank J. R. Kuhn and the referee for critical readings of
this manuscript. This research was supported in part by
NASA through the Hubble Space Telescope Program con-
tract NAS5-25084.

© American Astronomical Society Provided by the NASA Astrophysics Data System

	Record in ADS

