
Utah State University
DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies, School of

1-1-2013

Analysis of Star Identification Algorithms due to
Uncompensated Spatial Distortion
Steven Paul Brätt
Utah State University

This Thesis is brought to you for free and open access by the Graduate
Studies, School of at DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an authorized
administrator of DigitalCommons@USU. For more information, please
contact becky.thoms@usu.edu.

Recommended Citation
Brätt, Steven Paul, "Analysis of Star Identification Algorithms due to Uncompensated Spatial Distortion" (2013). All Graduate Theses
and Dissertations. Paper 1714.
http://digitalcommons.usu.edu/etd/1714

http://digitalcommons.usu.edu
http://digitalcommons.usu.edu/etd
http://digitalcommons.usu.edu/gradstudies
mailto:becky.thoms@usu.edu
http://library.usu.edu/
http://library.usu.edu/

UTAH STATE UNIVERSITY

Logan, Utah

2013

ANALYSIS OF STAR IDENTIFICATION ALGORITHMS DUE TO

UNCOMPENSATED SPATIAL DISTORTION

by

Steven P. Brätt

A thesis submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Mechanical Engineering

Approved:

Dr. R. Rees Fullmer Dr. Charles M. Swenson

Major Professor Committee Member

Dr. David Geller Dr. Mark R. McLellan

 Committee Member Vice President for Research and

 Dean of the School of Graduate Studies

ii

Copyright © Steven Paul Brätt 2013

All Rights Reserved

iii

ABSTRACT

Analysis of Star Identification Algorithms

due to Uncompensated Spatial Distortion

by

Steven Paul Brätt, Master of Science

Utah State University, 2013

Major Professor: Dr. Rees Fullmer

Department: Mechanical and Aerospace Engineering

 With the evolution of spacecraft systems, we see the growing need for smaller, more affordable, and

robust spacecrafts that can be jettisoned with ease and sent to sites to perform a myriad of operations that a

larger craft would prohibit, or that can be quickly manipulated from performing one task into another. The

developing requirements have led to the creation of CubeSats. The question then remains, how to navigate

the expanse of space with such a minute spacecraft? A solution to this is using the stars themselves as a

means of navigation. This can be accomplished by measuring the angular separation between illuminated

pixels in a camera image and associating the pixels with a corresponding star. Once identified, the

spacecraft can obtain a quaternion solution to pinpoint its position and facing. A series of star identification

algorithms called Lost in Space Algorithms (LISAs) are used to identify these pixels as stars in an image

and assess the accuracy and probability of error associated with each algorithm. This is done by creating

various images from a simulated camera program, using MATLAB as the program interface, along with

images of actual stars in the night sky containing uncompensated error data taken with an Aptina camera. It

is shown how suitable these algorithms are for use in space navigation, what constraints and impediments

each have, and if low quality imagers can be used to determine attitude using these LISA’s.

(221 pages)

iv

PUBLIC ABSTRACT

Analysis of Star Identification Algorithms

due to Uncompensated Spatial Distortion

by

Steven Paul Brätt, Master of Science

Utah State University, 2013

Major Professor: Dr. Rees Fullmer

Department: Mechanical and Aerospace Engineering

 With the evolution of spacecraft systems, we see the growing need for smaller, more affordable, and

robust spacecrafts that can be jettisoned with ease and sent to sites to perform a myriad of operations that a

larger craft would prohibit, or that can be quickly manipulated from performing one task into another. The

developing requirements have led to the creation of Nano-Satellites, or CubeSats. The question then

remains, how to navigate the expanse of space with such a minute spacecraft? A solution to this is using the

stars themselves as a means of navigation. This can be accomplished by measuring the distance between

stars in a camera image and determining the stars’ identities. Once identified, the spacecraft can obtain its

position and facing. A series of star identification algorithms called Lost in Space Algorithms (LISAs) are

used to recognize the stars in an image and assess the accuracy and error associated with each algorithm.

This is done by creating various images from a simulated camera, using a program called MATLAB, along

with images of actual stars with uncompensated errors. It is shown how suitable these algorithms are for

use in space navigation, what constraints and impediments each have, and if low quality cameras using

these algorithms can solve the Lost in Space problem.

(221 pages)

v

ACKNOWLEDGMENTS

 There have been many people who have made a great impact on my life and have helped me achieve

my goals and pushed me to excel. To my wonderful professor, Dr. Rees Fullmer, I’d like to thank you for

your constant support and input as I’ve worked to complete this thesis and finish my master’s program.

You have helped me improve dramatically in my abilities as a researcher and engineer. I’d like to thank

your wife who was kind enough to let you spend so much of your time helping me.

 To David Fowler, a good friend and great co-worker; thank you for your help and friendship as we

worked together on both our research theses. You’ve helped me understand much more than you know.

 I would like to say a special word of gratitude to my marvelous parents, Glenn and Odile, and my

family who were always there to encourage me to pursue my dreams and ambitions. Thank you for your

love, your prayers, and for the person you have helped me to become.

Steven Paul Brätt

vi

CONTENTS

Page

ABSTRACT .. iii

PUBLIC ABSTRACT ..iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES .. x

LIST OF FIGURES ..xi

NOMENCLATURE ... xvii

CHAPTER

1. INTRODUCTION ... 1

I. Overview .. 1
II. Star Cameras ... 1
III. Star Fields and Identification .. 2
IV. Commercial Cameras .. 3
V. Thesis Statement and Objectives .. 4

A. Thesis Statement ...4
B. Objectives ...4

2. STAR CATALOGS AND IDENTIFICATION METHODS EXAMINED 6

I. Star Catalogs ... 6

A. Star Databases ..7

1. Henry Draper Database ..7
2. PPM Database ..7
3. Hipparcos-Tycho Databases ..7

B. Main Identification Catalog ..8

II. Star Identification Algorithms Reviewed ... 9

A. Gotlieb ..9
B. Groth ... 10
C. Kosik .. 10
D. Anderson .. 11
E. Renken .. 11
F. Liebe ... 12
G. Baldini .. 13
H. Scholl .. 14
I. Ketchum ... 14
J. Mortari .. 15
K. Samaan ... 16

vii

L. Rousseau ... 17
M. Zhang .. 18
N. Kolomenkin .. 18
O. Tichy ... 19
P. Computational Considerations ... 20
Q. Author Summary .. 22

3. METHODOLOGY AND DEVELOPMENT .. 24

I. Methodology ... 24

A. Star Catalog Databases ... 25

1. Reference Catalog .. 25
2. Magnitude dependent Sub-Catalogs .. 26

B. Feature Lists ... 26

1. Feature List Organization ... 27
2. Feature List Truncation .. 28

C. Image Spots to Spot List ... 31

II. Development ... 32

A. Spot Processing and Verification ... 32
B. Spot Processing .. 32

1. Basic Processing .. 32
2. Comprehensive Processing .. 32

C. Verification Groups .. 32

1. Internal Verification ... 32
2. External Verification .. 33
3. Voting Algorithm ... 33

III. Implementation of Star Identifications ... 37

A. Method Permutation Overview .. 38
B. Two Star Dot-Product with Voting Algorithm ... 39
C. Liebe’s Lost in Space Algorithm .. 39
D. Modified Liebe Algorithm (Inclusion of Voting) ... 39
E. Comprehensive Triad with Voting - Brätt’s Algorithm 42
F. Constrained Pyramid Algorithm ... 43
G. Comprehensive Pyramid Algorithm ... 44
H. Modified Pyramid Algorithm ... 45
I. Pyramid with Voting Algorithm ... 47

IV. Star Camera Selection ... 48

4. TESTING CRITERIA ... 49

viii

I. Solution Evaluation .. 49

A. Image and Spot Evaluation Criteria .. 49

1. Internal – Spot Match ... 49
2. External – Image Identification .. 50

B. Minimum Required Stars for Solution (MRSS) ... 51
C. Probability of Error... 51

1. False Spots ... 52
2. Catalog Tolerance Range ... 52
3. Centroiding Error Range .. 53

II. Computational Considerations .. 54

A. FLOPS, TIC-TOC, and Profiling ... 54
B. Algorithm Order and Feature Creation Time ... 54

III. Algorithm Robustness .. 55

A. Error Prevention ... 55
B. Computational Failure .. 56

IV. Memory and Disc Space Management ... 57

A. Short-Term Usage .. 57
B. Long-Term Usage ... 57
C. Feature Lists and Patterns ... 57

5. SIMULATION TESTING ... 58

I. Simulation Testing .. 58

A. Percent Failure vs. Catalog Tolerance .. 60
B. Simulated Pixel Distortion ... 65

II. Computational Impacts ... 69
III. Memory Usage Results ... 70

6. EXPERIMENTAL RESULTS ... 73

I. Experimental Testing .. 73

A. Real Data vs. Catalog Tolerance .. 73
B. Experimental Data Computation .. 83

7. SUMMARY ... 85

8. CONCLUSIONS AND FUTURE WORK .. 87

REFERENCES .. 88

ix

APPENDICES

A. Coding .. 93

I. Simulation Codes .. 93

A. Simulation Main ... 93
B. Feature List Creation .. 99

1. Two Star Features List ... 99
2. Liebe Feature List .. 101
3. Liebe with Voting and Brätt Feature List... 103
4. All Pyramid Feature Lists .. 105

C. Body to ECI Rotation ... 107
D. Star Field Generator ... 108
E. Camera and Error Distortion Program .. 111
F. ID Accuracy Check .. 112
G. Post Processing and Probability of Error .. 114

II. Star Identification Program Codes .. 121

A. Two Star with Voting Method .. 121
B. Liebe’s Three Star Method ... 122
C. Liebe’s Method with Voting... 126
D. Brätt’s Three Star Comprehensive with Voting ... 128
E. Constrained Pyramid Method ... 130
F. Comprehensive Pyramid Method ... 136
G. Modified Pyramid Method ... 142
H. Pyramid with Voting Method ... 150
I. Voting Algorithm ... 158

B. Additional Figures ... 163

I. Simulations ... 163

1. Magnitude 3 Threshold .. 163
2. Magnitude 3.5 Threshold ... 183

II. Additional Experimental Data Figures ... 195

1. Magnitude 3 Threshold - OCT ... 195
2. Magnitude 3.5 Threshold - OCT .. 197
3. Magnitude 4 Threshold - OCT ... 198
4. Magnitude 3 Threshold - NOV .. 200
5. Magnitude 3.5 Threshold - NOV ... 201
6. Magnitude 4 Threshold - NOV .. 203

x

LIST OF TABLES

Table Page

2.1 Summary of star catalogs ..6

2.2 Hipparcos database formatting ..8

2.3 List of star identification methods and authors ... 23

3.1 General example of a feature list, showing stars and features arranged in patterns and the

 order of the features. ... 27

3.2 Spot list format .. 31

3.3 Example of Hipparcos numbers found for a single spot ... 35

3.4 Example of tagged Hipparcos numbers and identified result .. 35

3.5 Overview of LISA methods and permutations .. 38

3.6 Example of end result unit vector output of a star ID method .. 38

4.1 Example of matches .. 50

4.2 Algorithm order and feature list sizes based on n stars in FOV .. 55

5.1 Average time [sec] per image for solution of all simulation data at 27 average spots per

 image ... 70

5.2 Total permanent hard-drive space [MB] required ... 71

5.3 Sub-catalog database size [MB] .. 71

5.4 Feature list space usage [MB] ... 72

5.5 Number of patterns in feature list .. 72

6.1 Average time [sec] per solution method to solve Oct data. ... 83

6.2 Average time [sec] per solution method to solve Nov data. .. 83

7.1 Performance analysis of star identification algorithms ... 86

xi

 LIST OF FIGURES

Figure Page

 2.1 Liebe's pattern showing (1) and (2) as the dot product angles, and (3) as the interior

angle of the Central-Star ... 13

 2.2 Depiction of Mortari's Pyramid scheme .. 16

 2.3 Two Star Method showing pattern creation: a) The first pattern with angular feature θ1. b)

Next pattern creation ... 20

 3.1 Catalog, Imaging, and ID system flowchart .. 24

 3.2 Illustration of two displacement features (θ1, θ2), and an interior feature φ, all 3 stars and

3 features make 1 pattern. ... 26

 3.3 Depiction of number of stars in night sky based on magnitude .. 29

 3.4 Minimum number of stars in FOV based on star intensity and FOV of an imager 29

 3.5 Example FOV in grid form for MT = 4, showing circular reduced FOV in center grid 30

 3.6 First stage of voting listing of all possible pattern matches in a feature list 34

 3.7 Second stage of voting where Hipparcos numbers tagged and identification of spots 36

 3.8 Final stage: Verification of identified spots against Hipparcos numbers found in catalog

database ... 37

 3.9 Basic flow diagram of Liebe’s method ... 40

 3.10 Liebe’s method in 3 dimensions showing star 1 as the Central-Star with 1 and 2 as the

primary features and as the Interior (secondary) angle ... 40

 3.11 Pattern comparison to feature list database ... 41

 3.12 Logical flow diagram of Brätt Algorithm ... 42

 3.13 Logical flow diagram of Constrained Pyramid algorithm ... 43

 3.14 Depiction of Pyramid pattern creation where spot 1 is the apex, and spots 4 and 5 are the

next ‘4th spot’ for verification consideration .. 44

 3.15 Logical flow diagram of Comprehensive Pyramid algorithm ... 45

 3.16 Flow diagram of Modified Pyramid algorithm ... 46

 3.17 Logical flow diagram of Pyramid with Voting ... 47

 4.1 Example of tolerance bounds on a feature and overlapping of features in feature list 52

xii

 4.2 Example of an image spot centroid and the possible area of existence given a centroid

error range ... 53

 5.1 Flow diagram of simulation model with random Monte Carlo inputs .. 58

 5.2 Camera positions of 100 random simulated images with approximate range of imager FOV

as a Miller cylindrical projection. 3.5 mag. star field. ... 60

 5.3 Failed ID algorithms averaged against centroiding and false spots .. 61

 5.4 Acceptable ID algorithms averaged against centroiding and false spots for mag. 3.5 star

fields .. 62

 5.5 Failed match comparison of simulated data between algorithms at mag. 3.5 intensity 63

 5.6 Average number of empty solution sets of simulation data for 3.5 magnitude intensity

threshold .. 65

 5.7 Average simulation solution failures of failed methods as a function of centroiding error

for 3.5 magnitude threshold .. 66

 5.8 Average simulation failures of acceptable algorithms at 3.5 magnitude threshold 67

 5.9 Average of empty solution sets for simulation due to pixel distortion, magnitude 3.5

threshold .. 68

 5.10 Overall probabilities of failure of simulated identification algorithms ... 69

 6.1 Average solution failure of experimental data sets for Oct data at 3.5 magnitude threshold 74

 6.2 Average solution failure for experimental data sets for Nov data at 3.5 magnitude

threshold .. 75

 6.3 Average false matches of experimental data during Oct test, 3.5 theshold 76

 6.4 Average false matches of experimental data during November test, 3.5 threshold......................... 77

 6.5 Average empty set for Oct data, 3.5 threshold .. 78

 6.6 Average empty set for Nov data, 3.5 threshold ... 78

 6.7 Probability of solution error as a function of magnitude threshold for all algorithms

during Oct test ... 79

 6.8 Probability of solution error as a function of magnitude threshold for all algorithms during

Nov test ... 80

 6.9 Overall solution failure for experimental data for tolerances 1 to 5 mrad 81

 6.10 Overall empty solution sets for experimental data for tolerances 1 to 5 mrad 81

 6.11 Solution comparison of experimental data for tolerances 1 to 5 mrad .. 82

 B.1 Location of camera view point for 100 simulated images with approximate FOV area for

magnitude 3 star fields in Miller cylindrical projection .. 163

xiii

 B.2 Solution failures for 3 unacceptable simulated ID algorithms at magnitude 3 as a function

of catalog tolerance ... 164

 B.3 Solution failures for 5 acceptable simulated algorithms at magnitude 3 as a function of

catalog tolerance ... 165

 B.4 Image solution failures of all simulated algorithms at magnitude 3 as a function of catalog

tolerance .. 166

 B.5 Spot to star matching failures of all simulated algorithms at magnitude 3 as a function of

catalog tolerance ... 166

 B.6 Average empty sets of all simulated algorithms at magnitude 3 as a function of catalog

tolerance .. 167

 B.7 Solution failures of 3 unacceptable simulated algorithms at magnitude 3 as a function of

centroiding .. 168

 B.8 Solution failures of 5 acceptable simulated algorithms at magnitude 3 as a function of

centroiding .. 169

 B.9 Image solution failure of all simulated algorithms at magnitude 3 as a function of

centroiding .. 170

 B.10 Average failed matches of all simulated algorithms at magnitude 3 as a function of

centroiding .. 170

 B.11 Average empty sets of all simulated algorithms at magnitude 3 as a function of centroiding 171

 B.12 3-D image solution failure of simulated Two Star method as functions of catalog tolerance

and centroiding .. 171

 B.13 3-D image match failure of simulated Two Star method as functions of catalog tolerance

and centroiding .. 172

 B.14 3-D image empty sets of simulated Two Star method as functions of catalog tolerance and

centroiding .. 172

 B.15 3-D image solution failure of simulated Liebe method as functions of catalog tolerance and

centroiding .. 173

 B.16 3-D image match failure of simulated Liebe method as functions of catalog tolerance and

centroiding .. 173

 B.17 3-D image empty set of simulated Liebe method as functions of catalog tolerance and

centroiding .. 174

 B.18 3-D image solution failure of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding .. 174

 B.19 3-D image match failure of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding .. 175
 B.20 3-D image empty set of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding .. 175

xiv

 B.21 3-D image solution failure of simulated Brätt method as functions of catalog tolerance and

centroiding .. 176

 B.22 3-D image match failure of simulated Brätt method as functions of catalog tolerance and

centroiding .. 176

 B.23 3-D image empty set of simulated Brätt method as functions of catalog tolerance and

centroiding .. 177

 B.24 3-D image solution failure of simulated Constrained Pyramid method as functions of

catalog tolerance and centroiding .. 177

 B.25 3-D image match failure of simulated Constrained Pyramid method as functions of catalog

tolerance and centroiding .. 178

 B.26 3-D image empty set of simulated Constrained Pyramid method as functions of catalog

tolerance and centroiding .. 178

 B.27 3-D image solution failure of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding .. 179

 B.28 3-D image match failure of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding .. 179

 B.29 3-D image empty set of simulated Comprehensive Pyramid method as functions of catalog

tolerance and centroiding .. 180

 B.30 3-D image solution failure of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding .. 180

 B.31 3-D image match failure of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding .. 181

 B.32 3-D image empty set of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding .. 181

 B.33 3-D image solution failure of simulated Pyramid with Voting method as functions of catalog

tolerance and centroiding .. 182

 B.34 3-D image match failure of simulated Pyramid with Voting method as functions of catalog

tolerance and centroiding .. 182

 B.35 3-D image empty set of simulated Pyramid with Voting method as functions of catalog

tolerance and centroiding .. 183

 B.36 3-D image solution failure of simulated Two Star method as functions of catalog tolerance

and centroiding .. 183

 B.37 3-D image match failure of simulated Two Star method as functions of catalog tolerance

and centroiding .. 184

 B.38 3-D image empty set of simulated Two Star method as functions of catalog tolerance and

centroiding .. 184
 B.39 3-D image solution failure of simulated Liebe method as functions of catalog tolerance

and centroiding .. 185

xv

 B.40 3-D image match failure of simulated Liebe method as functions of catalog tolerance and

centroiding .. 185

 B.41 3-D image empty set of simulated Liebe method as functions of catalog tolerance and

centroiding .. 186

 B.42 3-D image solution failure of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding .. 186

 B.43 3-D image match failure of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding .. 187

 B.44 3-D image empty set of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding .. 187

 B.45 3-D image solution failure of simulated Brätt method as functions of catalog tolerance and

centroiding .. 188

 B.46 3-D image match failure of simulated Brätt method as functions of catalog tolerance and

centroiding .. 188

 B.47 3-D image empty set of simulated Brätt method as functions of catalog tolerance and

centroiding .. 189

 B.48 3-D image solution failure of simulated Constrained Pyramid method as functions of

catalog tolerance and centroiding .. 189

 B.49 3-D image match failure of simulated Constrained Pyramid method as functions of catalog

tolerance and centroiding .. 190

 B.50 3-D image empty set of simulated Constrained Pyramid method as functions of catalog

tolerance and centroiding .. 190

 B.51 3-D image solution failure of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding .. 191

 B.52 3-D image match failure of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding .. 191

 B.53 3-D image empty set of simulated Comprehensive Pyramid method as functions of catalog

tolerance and centroiding .. 192

 B.54 3-D image solution failure of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding .. 192

 B.55 3-D image match failure of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding .. 193

 B.56 3-D image empty set of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding .. 193

 B.57 3-D image solution failure of simulated Pyramid with Voting method as functions of

catalog tolerance and centroiding .. 194
 B.58 3-D image match failure of simulated Pyramid with Voting method as functions of catalog

tolerance and centroiding .. 194

xvi

 B.59 3-D image empty set of simulated Pyramid with Voting method as functions of catalog

tolerance and centroiding .. 195

 B.60 Oct data at mag. 3 showing average false matches for all algorithms ... 195

 B.61 Oct data at mag. 3 showing average solution failures for all algorithms 196

 B.62 Oct data at mag. 3 showing average empty set for all algorithms ... 196

 B.63 Oct data at mag. 3.5 showing average false matches for all algorithms .. 197

 B.64 Oct data at mag. 3.5 showing average false solutions for all algorithms 197

 B.65 Oct data at mag. 3.5 showing average empty set for all algorithms .. 198

 B.66 Oct data at mag. 4 showing average false matches for all algorithms ... 198

 B.67 Oct data at mag. 4 showing average false solutions for all algorithms ... 199

 B.68 Oct data at mag. 4 showing average empty set for all algorithms ... 199

 B.69 Nov data at mag. 3 showing average false matches for all algorithms.. 200

 B.70 Nov data at mag. 3 showing average false solutions for all algorithms .. 200

 B.71 Nov data at mag. 3 showing average empty set for all algorithms .. 201

 B.72 Nov data at mag. 3.5 showing average false matches for all algorithms 201

 B.73 Nov data at mag. 3.5 showing average false solutions for all algorithms 202

 B.74 Nov data at mag. 3.5 showing average empty set for all algorithms ... 202

 B.75 Nov data at mag. 4 showing average false matches for all algorithms.. 203

 B.76 Nov data at mag. 4 showing average false solutions for all algorithms .. 203

 B.77 Nov data at mag. 4 showing average empty set for all algorithms .. 204

xvii

NOMENCLATURE

Catalog = An ordered database comprised primarily of stars, positions in Earth Central

 Inertial space, and magnitude intensity.

Feature = A measurement between two spots or stars, such as angular distance, pixel

 distance, angular separation, pixel intensity, magnitude intensity, etc.

Feature List = An ordered database of stars with corresponding features based on a pattern

Image = A 2-dimensional array of pixels with intensity measurements per pixel returned

 by an imager.

LISA = Lost in Space Algorithm. An identification algorithm that requires no a-priori

 attitude information.

Match = A spot that has been correlated to a star.

Pattern = A group of features created from a selection of spots or stars.

Star Camera = A device that obtains images.

Star Tracker = A star camera primarily used to fix the orientation of a satellite to a single star.

Tolerance = The amount of variation given to a feature during an algorithms search through a

 database for identification.

Spot = A single or group of illuminated image pixels that has been centroided to a

 single point on an image.

Spot List = An array of spots and their 3-dimensional unit vector locations relative to the

 image.

Tags = The number of instances the same star has been used to identify a spot.

Votes = The number of instances a verification has proven a match.

CHAPTER 1

INTRODUCTION

I. Overview

 Technology has made great strides in the past two decades with the creation of the first CubeSat class

satellites [1]. These provide dramatically reduced carry weight at launch, the increased ease of jettisoning,

and the opportunity to be used as verification and validation vehicles [2]. However, these small satellites

have similar issues that affect larger spacecraft such as the physical allocation of on-board components [3],

scientific instrumentation restrictions [4], the ability to navigate [5], and one of all satellites’ primary

requirements: the ability to determine its attitude in space [5].

 Many attitude determination sensors exist such as: Magnetometers, Sun sensors, Gyroscopes, Earth

Horizon sensors, Orbital Gyrocompasses, Star Trackers and Cameras, Solar panel sensors, and more [5]–

[7]. These sensors range in accuracies from 0.1
o

to 5
o
 for sun, magnetometers, and solar cells [8], [9], and

may require upwards of 60 minutes for attitude convergence [9].

II. Star Cameras

 Pioneered in the early 1970’s [10], [11], star cameras are area array imaging sensors built from Charge

Couple Devices (CCD) and are the most accurate instrument for spacecraft attitude determination, with

accuracies ranging within 2.78 μdeg to 0.05 deg [12]–[14]. These star camera systems are extensively used

in attitude determination and many other uses such as inertial platform supervision and correction,

automatic tracking of artificial satellites, missile plume, and visible radiation [7]. These star cameras weigh

2.2 to 30 lbs with power consumption rates of approximately 5 to 120 Watts [12],[15]–[17].

 Several commercially available star camera systems have been developed and tested on-orbit with

various star identification programs and include: HAST [17], Terma HE-5AS [15], ST5000 [16], Ball

CT633 [18] and many others. The design types range from Canopus to Gimbaled to Rocket/Missile to Fine

Guidance [11], and can reach in price anywhere from $50,000 to half a million dollars [16],[19],[20]; yet

despite the cost provide exceptional high quality images with low to moderate resolution, lens baffles,

small Field of Views (FOV), and precision optics. Advancement in CubeSat specific star cameras have

2

yielded the Blue Canyon XACT [21], Berlin’s BST ST-200 [22], and others with masses of 0.11 to 1.54

lbs, power consumption between 220 mW to 2 W, and volumes of 3.0x3.0x3.81 cm
3
 (0.0343U) to 10x10x5

cm
3
 (0.5U).

III. Star Fields and Identification

 In the past 31 years the design direction of star camera sensors has turned towards star-field images

using a wider FOV and away from single star images [23]. This improves the ability to obtain attitude

determination by using multiple fixed points in the sky to acquire a quaternion solution.

 Star-fields are easier to recognize due to their geometric relationships, such as angular separation

between stars and spherical distances, making a star-field more unique than tracking a single star. Star

magnitudes, or star intensities, alone are an undependable means of recognizing stars in an image from a

star camera, though they can be used to aid in the reduction of stars in an image. Combined together, these

geometric relationships and magnitudes create recognizable areas of interest in the sky that can be used to

identify stars in an image and calculate an attitude solution.

 As early as 1963 [7] various star identification algorithms have been developed to identify stars in an

image, the techniques and methods of which range from the experimental to the space qualified. These

algorithms interpret stars in an image as spots and translate these spots into Earth Central Inertial (ECI)

coordinate positions, which are converted to a quaternion estimation of the satellite’s position in ECI.

 The ability to recognize stars autonomously and to determine spacecraft attitude with only a simple

star camera is a great advantage, yet to correctly identify the stars in a satellite’s view requires the correct

identification algorithm for that star camera, proper tables and catalogs of stars, and well defined optic lens

distortion calibration.

 However, with the widening of the FOV, issues facing star identification arise. These include lens

distortion in the star camera image, false objects in the image (i.e. planets, other satellites, radiation, etc.),

and noise sensitivity. Highly capable star identification algorithms are needed to facilitate correct star

identification and attitude determination for the spacecraft. This thesis will investigate a few of these

algorithms and their behaviors as well as their limitations in identification, solution attainability, error

prevention, and probabilities of error.

3

IV. Commercial Cameras

 One of the most critical situations for a spacecraft is determining its attitude in space. This is called the

Attitude Determination problem. A subset of this problem is for the case where star identification

algorithms are given no a-priori attitude knowledge and must still achieve star identification. This is termed

as the Lost in Space problem and the programs and methods that meet this need are called Lost in Space

Algorithms (LISA’s).

 Within the last ten years, developments in cellular phone hardware and pixel imaging have produced

commercially available digital cameras boasting light weight, lower power consumption, and higher

resolution images [24]. Current cell phone cameras, ranging in weight of 3.95 to 6.34 ounces [24],

improved resolutions of between 1 to 41 mega pixels [25],[26], pricing of $10 to $800 [26],[27], and

volumes near the 0.01U to 0.08U, are ideal for CubeSats and provide opportunities for more affordable and

low mass-cost missions. However, these cell phone cameras are not specifically designed as star cameras,

having general characteristics comprised of large FOV optics, lower optic and lens quality, increased noise

sensitivity, and spectral intensity (color) dependency. Such characteristics define cell phone cameras as

being low quality star imagers.

 With these commercial products being so readily available and more powerful every year, it is

proposed to evaluate if Lost in Space Algorithms can be used on low quality star imagers. Given the

difficulties in star identification and the reduced resolution of current small camera devices, questions arise

such as:

 Can these identification methods be used on high resolution, but low quality cameras?

 How is the behavior of the identification process influenced by a low quality star camera?

 How well can the identification algorithms obtain attitude determination with distorted data?

 With a typical cell phone, it is expected that the processing ability will be enough to not only use the

identification algorithms and process attitude control, but have sufficient remaining processing power to

control a CubeSat in flight. The desired goal is to test whether or not one or multiple star identification

algorithms tested in this analysis could be potentially a viable Lost in Space solver and could be placed on a

4

camera phone. Experimentation will be conducted with a low quality test camera called an Aptina [28].

Multiple identification algorithms will be created and tested to prove whether star identification algorithms

can be used on this camera and by extension other possible commercial products, by measuring the errors

in the identification process of the algorithms to find a model of comparison between identification

programs. Error bounds, reference catalog selections, ground based and spaced based solutions, simulation

results, and judging criteria will be shown. It is anticipated that the quality of the Aptina imager will be

more than sufficient to identify stars.

V. Thesis Statement and Objectives

A. Thesis Statement

 The purpose of this research is to model and analyze the errors in Lost in Space Star Identification

Algorithms to determine whether these algorithms can be used with a low quality camera to obtain attitude

determination.

B. Objectives

 There are four primary objectives in this research to aid in establishing the viability of using Lost in

Space Algorithms on low quality cameras.

1. Identify which identification algorithms are most likely to succeed. This will be accomplished by an

in-depth review of past methods and selection of which past identification algorithms have been of

greatest success. Based on this, additional identification algorithms will be constructed to test methods

of star processing and verification.

2. Identify boundaries for using star identification algorithms with a star camera. This will be achieved

through examination of sources of error for the identification algorithms. These sources of error will be

defined based on past research and camera parameters. The identification algorithms will be evaluated

through simulation and experimentation to determine their range of suitability within these errors.

5

3. Define probability of errors for each algorithm. Achieved through measurement of the number of

incorrect solutions from the images the algorithms solve. This will be compared to the number of

solutions that are returned empty or successful.

4. Develop a suitable simulation model of the sky and camera for algorithm testing. Attained through

construction of MATLAB programming. Will be used to externally input values to the identification

methods and evaluate the solutions returned by the algorithms.

6

CHAPTER 2

STAR CATALOGS AND IDENTIFICATION METHODS EXAMINED

I. Star Catalogs

 The basic building block for star identification is a Star Catalog. The first star catalog on record was

created in 127 B.C by Hipparchus of Nicaea [29] containing approximately 1025 stars. Over time, and with

the development of more sophisticated star instrumentation, star catalogs have been enhanced to contain

additional information such as the associated constellations to a star, the color, brightness, carbon content,

position in the ECI (Earth Centered Inertial) coordinate system, dwarf star content, etc.

 The most fundamental star catalog that will be necessary in the use of star identification must contain

an indexing of the stars in the sky and their positions. 25 star catalogs were reviewed by Thurmond [29]

outlining the number of stars in each catalog and the method in which they were collected. Table 2.1 shows

the star catalogs that were found and the year in which they were published.

Table 2.1 Summary of star catalogs

Catalog Name Observer # of Stars Published Date

Rhodes Hipparchus 1025 127 B.C.

Almagest Ptolemy 1028 150

Zij-I Sultani Ulugh Beg 992 1437

Astronomiae Instauratae Tycho Brahe 777 1592

Rudolphine Tables Kepler 1000 1627

Catalogus Stellarum Fixarum Hevelius 1564 1690

British Catalog Flamsteed 2866 1712

Coelum Australe Stelliferum Lacaille 9766 1742

Praecipuarium Stellarum Inerrantium Piazzi 6748 1803

FK 1535 1879

Bonner Durchmusterung Argelander 457848 1886

Cordoba Durchmusterung Thome 578802 1932

Carte du Ciel 1958 1887

Cape Photo Durchmusterung Gill & Kapteyn 454875 1896

AGK 8468 1900

BSC-HR 9096 1908

PGC Boss 6188 1910

Henry Draper Pickering & Cannon 225300 1918

7

SAO Smithsonian 258997 1966

Perth 70 24978 1970

Hubble GSC NASA 15000000 1990

PPM NASA 181731 1991

Hipparcos ESA 118218 1997

Tycho ESA 1058332 1997

2Mass Point Source 470992970 2003

A. Star Databases

 Of the catalogs listed, few provide the direct information necessary for star identification as required in

this analysis. From this list the most relevant for use of star identification were the Henry Draper [30], PPM

[31], Hipparcos [32], and Tycho [32] catalogs.

1. Henry Draper Database

 The Henry Draper star catalog used a prism in front of the telescoping lens to spread the light

according to wavelength to obtain spectral information per star. This provides a highly specific means of

identifying stars, as each star would emit a unique wavelength spectra. It is a whole sky catalog observing

stars up to a magnitude of nine [33].

2. PPM Database

 The PPM (Positions and Proper Motions) catalog covers nearly two hundred thousand stars north of

the 2.5 degree southern declination for the epoch J2000. The main purpose of the catalog was to provide a

dense and accurate net of astrometric reference stars on the northern celestial hemisphere [34].

3. Hipparcos-Tycho Databases

 The Hipparcos and Tycho catalogs were developed in 1989 with the launching of the ESA’s (Eurpean

Space Agency’s) funded satellite Hipparcos which flew from 1989 to 1993. This name comes from the

acronym for High Precision Parallax Collecting Satellite. Its main function was to obtain accurate parallax

measurements and star intensities. The Hipparcos database was published in 1997 and cataloged precise

lightyear distances and ECI positioning of 118218 principal stars to a resolution of 1 milliarcsecond [29];

an updated version with re-processed data was published in 2007. The Hipparcos catalog was particularly

8

notable for its stellar parallax measurements, which were more accurate than those produced by ground-

based observations [33]. The Tycho catalog contains nearly ten times more stars, each measured 130 times

during the mission to an accuracy of 25 milliarcseconds.

B. Main Identification Catalog

 The Hipparcos Database was chosen due to its high positioning knowledge to 1 milliarsecond and for

its comprehensive database listing of stars. It contained a sufficient number of stars in both hemispheres for

the ability to identify stars globally. Star intensity information allowed for variability in testing of camera

parameters during simulation and experimental analyses.

 A fully updated version of the database was published in 2007 [33] and was well known for its ease in

star indexing and precession. Below in Table 2.2 is an example of the catalog information formatted from

the Hipparcos database [35].

Table 2.2 Hipparcos database formatting

Hipparcos

Cat. Field
Name Description

H1 HIP /Identifier (HIP number)

H2 Proxy /Proximity flag

H3 RAhms /RA in h m s, ICRS (J1991.25)

H4 DEdms /Dec in deg ' ", ICRS (J1991.25)

H5 Vmag /Magnitude in Johnson V

H6 VarFlag /Coarse variability flag

H7 r_Vmag_Source /Source of magnitude

H8 RAdeg /RA in degrees (ICRS, Epoch-J1991.25)

H9 DEdeg /Dec in degrees (ICRS, Epoch-J1991.25)

H10 AstroRef /Reference flag for astrometry

H11 Parallax /Trigonometric parallax

H12 pmRA /Proper motion in RA

H13 pmDE /Proper motion in Dec

H14 RA_Error /Standard error in RA*cos(Dec_Deg)

H15 Dec_Error /Standard error in Dec_Deg

H75 VI_Color_Reduct /VI used for reductions

H76 Spect_Type /Spectral type

H77 Spect_Type_Source /Source of spectral type

9

II. Star Identification Algorithms Reviewed

 Since the 1970’s [36], several star identification algorithms were created to answer the Lost in Space

problem, and are separated into two categories of identification analysis: 1) an instance of subgraph

isomorphism, or 2) pattern recognition. Subgraph isomorphism deals with the angular separations between

the stars and their adjacent neighbors; pattern recognition associates stars with a pre-defined image pattern,

such as is used in facial recognition. The latter includes Grid algorithms, Neural networks, and Genetic

algorithms [36]. The focus of this study will be on the first classification of star identification methods

using subgraph isomorphisms. Brief descriptions of several of the algorithms developed under this

classification are presented below based on the author who created them. The terminologies used in this

work are set in braces {} next to the authors’ original terminologies which are left intact to maintain the

authors’ meaning.

A. Gotlieb

 Gottlieb [37] in 1978 developed the Polygon Matching method. From a set of measured stars {spots}

two are arbitrarily selected as points {spots} 1 and 2, and the corresponding angular separation {feature}

was computed and denoted as
12

md . Then all pair of stars {spots} (i,j) in a finite region of the catalog are

selected such that:

 12, mdjid
 (2.1)

where ε is the uncertainty {tolerance} in the distance measurements of the star sensors {imager} and d(i,j)

is the angular separation {feature} calculated for the pair of stars in the catalog. Gotlieb’s method states

that the number of star pairs {pattern} is not negligible. Even if only one pair {spot to star ID} of

observable stars {spots} is obtained, two possible star identifications exist. In both instances, it would be

necessary to select another measured star {spot}, point 3, from which two more separations {features}

could be calculated,
13

md and
23

md . A third star {spot}, dk, was then searched for in the catalog that could

be combined with the previous pairs {patterns} such that,

10

 13, mdjid and 23, mdkjd
 (2.2)

or,

 13, mdkjd and 23, mdkid
 (2.3)

however, if more than one pair {pattern} was found in the catalog, then the process would be repeated by

narrowing the uncertainty {tolerance}, ε, until the identification was unambiguous.

B. Groth

 In 1986, Groth [38] created a Two-Dimensional Coordinate Pattern Matching algorithm which used

sub-catalogs {feature lists}. The matching was based on the identification of similar geometrical

configurations {features} of points {spots} as triangles in two lists {feature list and spot list}. Provided the

two lists {feature list and spot list} had a sufficient number of points {spots} in common, the image

distortion was not too severe, and the random coordinate errors were minimal, identification could be

obtained. It is claimed to be insensitive to any translation, rotation, magnification, or image inversion. The

objective of the algorithm was not to match all points {spots} in the two lists of arbitrary size, but from the

matches found, a coordinate transformation between body and ECI coordinate systems could be derived.

Other points {stars} in the lists could then be matched by comparison to the identified points {spots}, e.g.,

by matching points {stars} that were sufficiently close. Groth suggested that a faster way to search the sub-

catalogs {feature list} would be to sort the triangles’ sides [39], created in the pattern generation step, in

order based on permutation-invariant values, such as the logarithm of the perimeter of a triangle.

C. Kosik

 Kosik in 1991 [37] developed a Distance-Orientation method which improved upon the polygon

technique used by Gotlieb by requiring an approximate estimate of attitude. This estimate enabled the

projection of the star catalog region {sub-catalog} onto the star imagers FOV. The same stars would be

found but projected onto a tilted (theoretical) star sensor {image}. As a consequence the adequate pairs

{patterns} would verify a distance criterion {search tolerance}, but should also have approximately the

same orientation. Each pair {pattern} could be considered as a set of vectors, and the vectors of both

11

measured stars {spots} and projected catalog stars {stars from feature list} should have approximately the

same orientation.

 In his algorithm a set of catalog pairs {star and spot pairing} is obtained from his distance criterion and

each pair which could satisfy this criterion for angles around 0° and also for angles of obtention around

180° were kept. The obtention of an angle, according to Kosik, meant that the order of the catalog stars is

opposite to what he defined as the right order (i .e., if a catalog pair of stars (1c,2c) compared to a measured

pair of stars (1m,2m) differs from about 180° , then the catalog star 1c corresponds to spot 2m and the

catalog star 2c corresponds to spot 1m). If more than one pair of stars {stars from feature list} is obtained it

is necessary to select another measured star {spot} and continue the process. Thus, if any ambiguity

existed, the stars {spots} were rejected and the identification proceeded to the next group {pattern}.

D. Anderson

 In 1991, Anderson and Junkins [39],[40] attempted to address the uncertainty of star triplets {patterns

of three spots} by proposing a permutation matrix, and the development of star {spot} pattern parameters

{features} that were independent of the order in which the stars {spots} were selected to reduce search time

in identification of the catalogs {feature lists} (i.e. the features from the image are unsorted). It was

Anderson’s desire to also find a means to enhance the performance of low earth orbit star trackers which

were typically affected by nonlinearities such as lens distortion, coma, and chromatic aberration, as well as

atmospheric refraction, thermal cycling, and vibration. Using star-triplet patterns {patterns of 3 spots},

Anderson proposed the use of an array processor to handle matrix multiplications required in his

permutation matrices. However, his database storage remained higher than he had anticipated, and there

were no advances made on the database search times based on his assumptions.

E. Renken

 In 1992, Renken et al. developed his own method called the Renken method [41]. He began

development with the creation of sub-catalogs {feature lists} based off of the Smithsonian-Astrophysical-

Observatory (SAO) catalog. These sub-catalogs were reduced to include only the stars that were detectable

by a CCD camera, which he left unspecified. Planets were added automatically to the sub-catalogs with

their positions in order of date and time. Errors in the star catalogs were handled manually.

12

 His algorithm used a procedure which initialized matching of variables by removing stars {spots} from

the image based on thresholding the intensity of the stars {spots} in the image. He began by constructing an

array of pixel-distance-xy {pixel based features} of all segmented objects {remaining image spots} which

were multiplied by a value between the pixel distance on the CCD pixel array and the angle at the sky

(degree per pixel). This value depended on the CCD pixel size and the focus length of the optic being used.

 A tolerance value resulted in maximum and minimum values of the distance between stars {spots}

which were separated into two arrays. This tolerance allowed Renken to compensate for inaccuracies in his

star catalog and imaging errors of the optic device. The last phase before matching was to calculate the

cosine of the minimum distance with respect to the maximum distance in his arrays.

 Within all of his matching procedures {program} each object {spot} is connected to all other objects in

a comprehensive approach. For his algorithm, Renken required a minimum of three matched stars {spot to

star ID} for a 3-axis attitude determination.

 To handle a potential variety of matching results, he implemented a verification procedure. This

procedure considered the results of former attitude determinations stored in a history-buffer {initial attitude

registry}, thus becoming a tracking system. However, to handle the correction of miss-matching {false

identification} during potentially extreme situations, the history-buffer would be downlinked and pattern

matching {identification} would need to be done by hand.

F. Liebe

 In 1992 Liebe [42] established a method which he called the Lost in Space Algorithm for star

identification by obtaining a set of what he called Features which were based strictly on the nearest two

stars {spot neighbors} to what he called a Central-Star. In 1995 he used this algorithm in conjunction with

a CCD imager and a microprocessor to create a star tracker with a precision of 1 arcsecond [42].

 His algorithm approaches the identification process by obtaining a list of all the measured stars {spots}

in an image then retrieving the first star {spot} in an image, labeling this as the Central-Star. Following, he

then detected the nearest two stars {spot neighbors} to the Central-Star. These were recorded and used to

calculate the dot-product angles {features} between the Central-Star and the other two stars {spots}. In

addition to these angles {features}, he would calculate the sub-spherical angle {another feature} between

the three stars {spots} using the Central-Star as the vertex. This sub-spherical angle he called the Interior

13

angle, which is calculated by taking the dot-product of the vectors between the Central-Star and the other

stars {spots}. This he did by taking the angle from the planar projection of the vectors between the spots in

the image, Figure 2.1.

Figure 2.1 Liebe's pattern showing (1) and (2) as the dot product angles, and (3) as the interior angle

of the Central-Star

 The combination of these three stars {spots} and their associated angles was called a pattern. This

process continued until every star {spot} in the image was used as a Central-Star and all patterns were

recorded. A limitation of his algorithm is in the formation of the patterns using only the nearest neighboring

spots rather than forming patterns using every combination of spots together in the image.

 Once the patterns were found from the image, he compared them to a sub-catalog {feature list} where

each star {spot} was solved for the most likely matching candidate. If multiple solutions existed for a given

star {spot}, the most frequent result was selected as the correct solution; e.g. if spot 1 in the image is solved

in each pattern and returns the results, Star 1, Star 4, Star 1, and Star 5 from the feature list, then the

returned solution for spot 1 will be Star 1.

 No type of additional validation or verification was found to be present in his method. This algorithm

became fairly limited in scope as the number of false star spikes in the image increased. Since the Central-

Star recognizes only the two closest spots near it, the addition of false star spikes reduces the chances of

success as these false spikes approach the Central-Star.

G. Baldini

 In 1993, Baldini et al. [43] proposed a Multi-Step Star-ID method. Baldini’s method identified the

brightest b stars {spots} in a given image, after which he then measured the angular separation {features}

14

of the sequence of five stars {spots}. He then proceeded through a linear examination of the catalog for

every star in the catalog which fell within a prescribed tolerance. Comparing the distances {features} of

each star {spot} in adjacent lists {feature lists} (somewhat similar to Groth’s method) he would determine

if any star {spot} exceeded the tolerance of the observed angular separation {feature}. As items {possible

star ID’s} were eliminated the number of each iteration comparison was reduced. Baldini was then left with

b lists containing stars {spots} that met their neighboring distance criteria {tolerance}. He then formed all

combinations {patterns} of the stars {spots}, discarding combinations whose sequence of angular

separations {features} did not match the observed stars {spots} in his list {feature list}.

H. Scholl

 In 1994, Scholl [44] published a more straightforward method called her Six-Feature Star-Pattern

Algorithm. The image spots were to be ordered and removed {thresholded} by their relative intensities,

eliminating the permutations that arise when considering the possible orders of three stars {spots}. Her

desire was to eliminate the need for a-priori attitude knowledge of a star tracker. She states that the

significance of a single triangle as a pattern is that it would be independent of any in-plane rotation angle

and translation.

 Uniquely, if multiple solutions exist for a triangle pattern, she automatically decreased the value of her

feature tolerance around the magnitude and distance to progressively tighten until a single star field was

identified.

I. Ketchum

 In 1995 Ketchum et al. [45] proposed a 2
nd

 Sequential Filter algorithm, following the work of van

Bezooijen [46]. Ketchum uses the intensity of the brightest star {spot} in the image to determine the

likelihood of pointing in any particular direction and filters the list {feature list} of possible stars using the

brightness of the second brightest star {spot} in the image, although she admits the algorithm would need

to search as much as 43% of the catalog {feature list} for the appropriate stars.

 Ketchum uses in her analysis a star catalog called the standard GSFC Flight Dynamics Division (FDD)

Multi-Mission System catalog. The catalog was used in the Gamma Ray Observatory and the Upper

Atmospheric Research Satellite missions [45].

15

 Her measurements are taken using a 4-degree radius FOV imager. The algorithm is based on

constructing polyhedrons out of the stars {spots} in the image. However, due to the small FOV, there

existed a nonzero probability that the FOV would not contain a primary bright star, which was the basis for

her sub-catalogs {feature lists}.

 Ketchum’s algorithm uses several recursive steps to verify the identity of the stars {spots} and ensure

that the correct sub-catalogs {feature lists} are used. Her algorithm is among of the first to attempt star

identification without a-priori knowledge; however, it is dependent on the star intensities and thus

dependent on the performance and calibration of the imagers used.

J. Mortari

 In 2004, Mortari et al. [47] developed the Pyramid algorithm, supplemented with his k-vectoring

technique [48]. This algorithm uses a minimum of 4 stars for feature extraction and pattern creation.

Mortari’s Pyramid design was described by Spratling [39] as using an optimal permutation algorithm to

exploit the ability of his algorithm to select which stars to match. This permutation is written to minimize

the time spent considering stars that do not match, suspecting them to be non-star spikes (false spots) on the

image plane. Mortari’s code had been tested to reject non-stars in an image containing only five real stars

but with 63 non-stars included, however, this was done with very low centroiding error.

 He generated patterns beginning with the first star {spot} of the image being the apex of the pattern

(one of the corners) and would select in turn the next two stars {spots} of the image to build a triad pattern.

With this established, the next star {spot} in the image was selected to verify the validity of the triad. This

4
th

 spot created another three possible triads, hence the impression of a Pyramid with 6 features. If this

Pyramid did not match with the patterns in the sub-catalog {feature list}, then the algorithm kept the initial

3 stars {spots} and used the next observed star {spot} in the spot list to generate a new Pyramid.

 In Figure 2.2, the three vertices (i, j, k) are the primary observable stars {spots} that the algorithm

wishes to identify, and vertex r is the fourth star {spot} used as verification, with α’s being the angular

distance between the observable stars {spots}. With four triad patterns (each triad containing upwards of

six features), the features are compared to patterns within the feature list using a feature tolerance. Out of a

possible 24 features, Mortari uses only 6 for his identification. Furthermore, he uses a verification phase

prior to returning a solution.

16

Figure 2.2 Depiction of Mortari's Pyramid scheme

 The Pyramid algorithm was successfully tested in-flight on Draper’s “Inertial Stellar Compass” star

tracker [49] used on MIT’s satellites HETE and HETE-2. This algorithm is presently under exclusive

contract to StarVision Technologies, thus, neither pseudo code, nor programming was obtainable due to

infringement issues.

K. Samaan

 Recently in 2005, Samaan, in conjunction with Mortari and Junkins, presented two separate methods

using an advanced searching routine called the k-vector [48],[50]. The first algorithm is called the Spherical

Polygon search (SP-search) and the second the Star Neighborhood Approach (SNA). For the SP-search, the

method accessed the stars that could potentially lie within the star tracker FOV and then calculated the

interstar angles {features} between the measured stars {spots} and the cataloged stars. The SNA method

also accessed candidate stars from the catalog {feature list}; performing its star identification by locating

the observed cataloged stars {spots} by a cataloged knowledge {initial attitude estimate} of stars

neighboring the identified stars {spots} from the previous image.

 These two do require a-priori attitude knowledge, hence are not Lost in Space algorithms, yet are

mentioned here for their unique ability to speed the processing of star identification against star catalogs

and feature lists. Initial attitude knowledge is used to ease star identification by truncating the sub-catalogs

17

{feature lists}. It must be noted that the centroiding precision they used was on the order 17 μrad, which

defines a high quality imager. They conducted several tests to examine the slide, or sweep, of spots in an

image using a rate gyro to obtain an angular velocity vector and calculate the quaternion rotation matrix.

These two methods were super-imposed into the Pyramid algorithm programming to speed searching

through the star catalog. The exact method in which this was done was not specified.

L. Rousseau

 Rousseau et al. [51] published a method in 2005 called Star Recognition Algorithm, which he claimed

as being robust to errors introduced by a new CMOS Active Pixel Sensor (APS). The algorithm’s metric is

the sine of star-triangle {triangular pattern} interior angles {features}, yet instead of using any combination

of stars {spots}, he used only the closest two stars {spots}, and used only one of the three (two

independent) interior angles as a parameter. His pattern selection meant there was only one entry in the

catalog for each star. Furthermore, Rousseau did not specify a method for selecting star triangles {patterns}

from the catalog {feature list}.

 Rousseau attempts to identify a group of 3 spots and uses the identification to compute the

approximate attitude of the imager. This initial attitude estimate is then used to truncate the catalog {feature

list} and finds all the stars that should be visible. Each observation is then transformed into the reference

frame. The observed stars are then matched up with catalog stars, and the inter-star angles compared. The

best of the matches of all the triangles is then selected.

 It is unclear whether Rousseau’s performance data is on his original 45,000 star catalog, or another

mentioned, reduced 1,300 sub-catalog. Though he conducts his tests in MATLAB, which unquestionably

increases computation time, it is unclear why Rousseau claims the algorithm is fast from his reported data,

and without any performance comparison to any other algorithm. Furthermore, he does not describe why

his validation phase, which uses inter-star angles to reject incorrect matches, is more robust to APS-induced

measurement errors, when the same inter-star angles are used by previous methods. Rousseau’s parameters,

however, have the benefit that there is no ambiguity as to which star in the triangle is the listed star, as long

as the star triangle does not contain nearly identical angles

18

M. Zhang

 In 2007, Zhang et al. [52] proposed a feature extraction technique, similar to Liebe [42], using the

inter-star (dot-product) angles {features} and the angle made by two stars {spots} relative to a central star

{spot} (i.e. the interior angle of the 3 spots similar to Liebe). One of the most unique details of his

algorithm is the use of polar coordinate values as a means of feature creation. Though Zhang’s work is

similar to the definition of a Grid Algorithm [52], his method still can be classified under the isomorphism

class of algorithms as his creates new patterns per image and compares feature to feature, rather than grid to

grid.

 Differing from many other identification methods, Zhang creates a sub-catalog {feature list} called a

List Entry. Rather than creating every possible combination of features from reference stars {main catalog

database}, he selects only the m possible sub-catalogs {feature lists} containing n stars that fit the image.

This greatly sped identification processing time and helped remove possible errors. However, he says that

in the case of false-star spikes, this would potentially cause the algorithm to select the wrong sub-division

of the catalog, which would not contain the necessary information for star identification.

N. Kolomenkin

 Kolomenkin et al. in 2007 [53] presented the Voting Algorithm. The algorithm was based on a

geometric voting scheme in which a pair {pattern} of stars {stars} in the catalog voted for a pair {pattern}

of stars {spots} in the image if the angular distance {features} between the stars {stars and spots} of both

pairs {patterns} was similar. He states that the angular distance is a symmetric relationship and that each of

the two stars from the catalog would vote for each of the spots in the image. The identity of each star

{spot} in the image would be matched to the catalog star {star} that cast the most votes for that star {spot}.

After gathering all the identities of the stars {spots}, the ECI positions were used to compute the imagers

pointing quaternion {attitude}.

 He stated that nearly 80 pairs of catalog stars will be found for each image star {spot} pair {pattern}.

Stars {spots} with incorrect identities will receive a very small number of votes, whereas correctly

identified stars {spots} will support each other. He used what he called a “clustering algorithm” which was

defined as a conditional statement that if the number of votes for a star {spot} was close to the maximal

number of votes among all stars {spots} in the image then the star identification was considered correct.

19

This process was effective in eliminating erroneous matches and used to recognize the correctly identified

stars.

 Typically, the images contained false-star spikes and were matched to stars from the catalog in

Kolomenkin’s voting stage. Afterwards, a validation phase was used to allow the algorithm to handle even

a large set of false stars. The algorithm was also able to handle true stars {spots} which were erroneously

matched in the voting stage. The latter happened, he states, when the star {spot} had only a few close

neighbors.

 Kolomenkin affirms that there are many possible variations of this voting algorithm. These depended

on specific camera qualities, fine tuning, and accuracy versus speed requirements. The basic algorithm did

not exploit the star brightness information due to camera image and catalog star brightness values that

could not be matched reliably at that time. However, a rough match could be made by dividing the

brightness values of the image stars {spots} into a few (2 to 4) brightness groups. Comparing the brightness

of catalog {reference stars} and image stars {spots} aided in the identification process and removed

erroneous matches. Kolomenkin implemented and tested his algorithm on simulated data and on real sky

images, but it is unclear if it has been tested on actual in-flight systems.

O. Tichy

 In 2011 Tichy et al. [54] used two stars to create an identification algorithm which he labeled as the

Two Star Voting algorithm. This method obtains patterns from the basic use of the dot-product between

two 3-dimentional vectors (Figure 2.3). Using the center of the imager as his origin, the angular distance

between the two spots were created and recorded as a single feature. This computation continued between

each spot in the image until all possible combinations of two spots were created. Due to a single feature

being created in each instance, the use of the word feature and pattern are interchangeable, however, strictly

for the case of this method. The observable stars were indexed and used to index the patterns in a table

containing the position of each observable star on the imager, and the angle between them.

 Tichy advanced his identification method by incorporating the strategy of a geometric Voting

Algorithm [53]. This algorithm operated in two phases - the voting phase and the validation phase. The

angular distance of each pair of spots on the image was compared with the angular distance in a sub-

20

catalog. These pairs {patterns} of spots receive a vote as a corresponding pair {pattern} of stars if a match

in the sub-catalog {feature list} is found for some fixed tolerance attached to the angular distance.

Figure 2.3 Two Star Method showing pattern creation: a) The first pattern with angular feature θ1.

b) Next pattern creation

 Once these pairs {patterns} are all collected, he would compare the number of votes received for a

reference star per spot in the image and maintain only the spots and reference stars that had the maximum

votes. His method was restricted to stars which were within 0.7 rad beyond the FOV of the imager and

required an a-priori attitude. Tichy assumed that a rough attitude estimate would be available from another

source such as a magnetometer or Kalman filter prediction.

P. Computational Considerations

 Spratling et al. [39] in 2009 compared the computation performance of the algorithms from Groth,

Anderson, Liebe, Baldini, Mortari, and Zhang. He also included other identification methods that fell under

the pattern/grid recognition class of identification.

 Spratling says of Groth that his algorithm runs at a high polynomial power of order n stars {spots}

when searching the sub-catalogs {feature lists}, but could be improved by sorting the triangles sides

{features in the pattern} based on permutation resistant values, e.g. the logarithm of the perimeter of the

triangle. Overall, the method ranked at a high level of computation time.

 Baldini uses five spots, inherently containing twelve independent features, but uses only nine features

when performing the identification process. Spratling [39] suggests this means the required field of view

21

may be larger for Baldini’s method when compared to other methods to ensure that sufficient visible stars

exist.

 Spratling quotes Anderson by stating his method would improve in computation given an array

processor to perform the matrix multiplication, decreasing the running time of the star identification

process. However, it must be noted that the use of array processors use comparatively large amounts of

power in contrast to a serial processor. His method also ranked high in computation time.

 Liebe is said to have much reduced processing time searching through feature lists. Spratling provides

the equations for Liebe’s system time, where his feature extraction operation is of order,

 bfO 2log
 (2.4)

and his database size as,

 nO
 (2.5)

where f was the number of stars in a given sub-catalog {feature list}, b was the number of stars in the

pattern, and n was the number of stars referenced in Liebe’s star catalog. Though his feature extraction took

longer than Anderson’s, his database search time could be reduced. Spratling mentions that Liebe, by

incorporating into his own algorithm an optional recursive algorithm, was able to identify stars upwards of

20 times faster than his original Lost in Space Algorithm.

 During Baldini’s processing of the distance comparison between feature lists, Spratling notes that

although non-stars {false spots} would get weeded out in the process of identification, the addition of non-

stars to the algorithms increases most of the steps linearly or quadratically. Baldini’s method requires

 2
mnbO

 (2.6)

time to compute the operation of these spots if they are within the tolerance; where m represents the

fraction of stars in the catalog that fall within the tolerance range. The disadvantage of this method is the

requirement that star intensity values be used to aid in the identification process, which makes the

22

algorithm highly dependent on the performance and parameter details of the imager, but also uses more

processing time for identification.

Mortari’s Pyramid algorithm was among the fastest in star identification computation. Using what

Mortari called his “k-vector” approach, the amount of time required to search the database {catalog} and

tables {feature lists} could be independent of the size of the database. This was the fastest among the

algorithms in terms of database searching with equation 2.7 as the feature extraction and equation 2.8 as the

database search, where k is is the number of possible star {spot} pairs with inter-star angles within the

tolerance.

 bO
 (2.7)

 kO
 (2.8)

Q. Author Summary

 Provided in Table 2.3 is a listing of the identification algorithms previously discussed outlining the

authors by date and algorithm name. Included is the minimum number of stars required in each algorithm

to produce a solution and the number of features in each pattern. The table shows that the minimum number

of spots required in the FOV of the star camera is within 3 to 4 spots, for the majority of the star

identification methods. This has remained the minimum for the past 30 years.

 The variability between the algorithms exists in the manner of searching the star catalogs and feature

lists, the manner in which patterns between spots are constructed, the number of features in a pattern, and

the verification used. All the authors conclude the necessity to have a tolerance applied to the features and

that this tolerance selects multiple possible solutions to any given spot in the image. The value of this

tolerance, and the way in which the feature lists are created and ordered can adversely affect the

identification process and should be chosen carefully based on the characteristics of the optics being used.

 As well, many of the authors used the magnitude intensities of the spots in the image to further reduce

possible false spots and noise prior to identification. Some others, like Ketchum, use the spot magnitude to

select which of a multitude of feature lists ought to be used for identification, rather than using a single

large listing of stars.

23

Table 2.3 List of star identification methods and authors

Author Year Name Min. # Stars Needed # of Features per Pattern

Gottlieb 1978 Polygon Match 3 3

Groth 1986 2D Coordinate Pattern Matching 3 NA

Kosik 1991 Distance-Orientation 2 2

Anderson 1991 Permutation Matrix NA NA

Renken 1992 Renken 4 4

Liebe 1992 Lost in Space 3 3

Baldini 1993 Multi-Step Algorithm 5 1

Scholl 1994 6 Feature Method 3 6

Ketchum 1995 2
nd

 Sequential Filter 2 NA

Mortari 2004 Pyramid Algorithm 4 6

Rousseau 2005 Star Recognition 3 NA

Zhang 2007 Radial-Cyclic 2 NA

Kolomenkin 2007 Voting Algorithm 3 3

Tichy 2011 Two Star Voting 3 3

24

CHAPTER 3

METHODOLOGY AND DEVELOPMENT

I. Methodology

 This section outlines the manner in which the star databases for identification are created and used, the

inputs to the identification algorithms, concept and method of feature list truncation, and feature list

organization. Figure 3.1 illustrates the manner in which the catalogs, imaging, and identification systems

relate to one another.

Figure 3.1 Catalog, Imaging, and ID system flowchart

25

A. Star Catalog Databases

1. Reference Catalog

 The catalog processed in 2007 was selected based on its larger database of stars, its proper motion

information (precession), and the use of the Julian 1991.25 epoch. Having a larger database meant a more

comprehensive listing of the sky as compared to a guide star catalog, and allowed the flexibility to operate

in any part of the night sky given a star intensity value. The main Hipparcos star catalog was retrieved from

ESA’s website [55].

 Using the star precession information, right ascension and declination positions of the stars were

updated from the J1991.25 epoch to correspond to the year 2012. This was implemented through:

t
pm

RARA RA
iU

3600*1000

 (3.1)

and,

t
pm

DECDEC DEC
iU

3600*1000

 (3.2)

These terms are defined as:

 RAU – Updated right ascension coordinate of star from catalog in new epoch (mas/yr
2
)

 RAi – Right ascension coordinate of catalog star at epoch J1991.25 (mas/yr
2
)

 pmRA – Proper motion of RAi (mas/yr
2
)

 Δt – Time difference between epochs in fractional years

 DECU – Updated declination coordinate of star from catalog in new epoch (mas/yr
2
)

 DECi – Declination coordinate of catalog star at epoch J1991.25 (mas/yr
2
)

 pmDEC – Proper motion of DECi (mas/yr
2
)

 The coordinate positions of the main Hipparcos catalog were replaced with the coordinate positions of

the new epoch in a separate database. This new updated catalog is called the Reference Catalog (R.C.).

26

2. Magnitude dependent Sub-Catalogs

 From this reference catalog any number of magnitude reduced sub-catalogs can be created by

truncating the database based on the magnitude intensity of the star field desired and maintaining all stars

of equal or brighter intensity. From the reference catalog several sub-catalogs were created by truncating

the R.C. according to star intensity based on a desired magnitude threshold. These sub-catalogs contained

solely the Hipparcos identification value (index number) of each star, magnitude intensities, and position in

right ascension and declination in degrees (see Table 2.2 for Hipparcos formatting). The truncation used in

this analysis was 3, 3.5, and 4 magnitude star fields.

B. Feature Lists

 These sub-catalogs were used to create a new database called a Feature List (F.L.). A feature list

database is an organized collection of patterns comprised of grouped features, where features are the

individual angular displacements between stars or their vectors. Patterns are groups of stars with their

associated features compiled from the sub-catalogs based on the individual characteristics of the

identification algorithm they are to be used in. Figure 3.2 shows an example of 3 separate features between

3 stars.

Figure 3.2 Illustration of two displacement features (θ1, θ2), and an interior feature φ, all 3 stars and

3 features make 1 pattern.

27

 The identification algorithms directly compare patterns generated from the spots in the image to the

patterns contained in the F.L. This is a similar process to what was used by Leibe (see Chapter 2II.F) and

Samaan (see Chapter 2II.K).

1. Feature List Organization

 An important aspect of these feature lists is their organization. The feature lists created are directly

correlated to the type of identification method used and are individual to each algorithm, thus the number

of stars in a pattern and the number of features will differ; however, similarities exist in the organization of

the features where each pattern is structured with the stars listed first using their Hipparcos values, then the

angular distance features (primary features), followed by the interior angle features (secondary features).

The pattern is re-arranged to place the primary features in ascending order, which also realigns the star

identification values that they may continue to correlate to their individual features. The patterns in the

feature lists are then arranged in ascending order of the first feature of each pattern. An example of how

this looks is shown in Table 3.1.

Table 3.1 General example of a feature list, showing stars and features arranged in patterns and the

order of the features.

Stars in Pattern Features

Star 1 Star 2 … Star b θ1 θ2 … θP Φ1 Φ2 … ΦS

Hip 1 Hip 2 … Hip b 1,1
2,1 … P,1

1,1
2,1 … S,1

Hip 1 Hip 2 …
Hip
b+1 1,2

2,2 … P,2 1,2
2,2 … S,2

…

…

Hip
n-b+1

Hip
n-b+2

… Hip n 1,p 2,p … Pp, 1,p 2,p … Sp,

 Table 3.1 shows the patterns as they are found in the feature lists and equations 3.3 and 3.4 show how

the features are organized, where:

28

 SpPn
 (3.3)

P,12,11,1 ... and

1,1,21,1 ... p
 (3.4)

where the terms are defined as:

 n – number of stars in the FOV

 b – number of stars in the pattern

 P – number of primary features desired

 S – number of secondary features desired

 p – number of patterns created

 The interior angles do not need to be repositioned in ascending or descending order relative to each

other due to the intrinsic nature of all the angles in a pattern being directly correlated to one another.

2. Feature List Truncation

 From the previous sub-section, the number of stars in the FOV will greatly influence the number of

patterns in the feature list, and hence the overall bit size of the database and identification speed.

 The feature lists are highly dependent on the magnitude threshold of the imager, which determines the

number of stars or spots in the image. As seen in Figure 3.3, the number of stars exponentially increases

with dimming magnitude intensity.

 By examining the sky at varying FOV sizes, the minimum expected number of stars seen in an image

exponentially increases with magnitude. Shown in Figure 3.4 is the minimum number of stars expected in

any image for the entire sky with three different FOV sizes. It can be seen that for an imager of 50
o
 FOV

the minimum number of stars the imager will see at a magnitude of 4 or dimmer will be near 40. It is not

reasonable for star identification algorithms to attempt processing of so many stars.

29

Figure 3.3 Depiction of number of stars in night sky based on magnitude

Figure 3.4 Minimum number of stars in FOV based on star intensity and FOV of an imager

30

 With an imager, the number of observable stars (image spots) can be reduced by refinement of the

pixels and centroiding [56],but for the feature lists, which are derived from the sub-catalog and whose

patterns are proportional to the number of stars, the number of features can be excessive.

 To reduce the feature list size and increase processing speed without removing stars from the sub-

catalogs, the F.L.’s were truncated based on the FOV. Patterns were then created within a sub-grid of the

FOV by using equation 3.5.

54
3

43
2

31
1

MT
FOV

MT
FOV

MT
FOV

RFOV
 (3.5)

where FOV is the field of view of the imager, MT is the magnitude threshold, and RFOV is the reduced FOV

for feature development. This reduced FOV can be better understood visually in Figure 3.5.

Figure 3.5 Example FOV in grid form for MT = 4, showing circular reduced FOV in center grid

 To create features and patterns, a star is chosen (X) from the sub-catalog. The FOV (all 9 squares in

the figure above) is centered on this star and is divided into grids, each the size of RFOV. Only the stars that

fit within one grid size of X are used to create patterns. Once all necessary patterns are calculated between

the stars and star X, the next star is selected as X; the FOV is re-centered on that star, and again all

necessary patterns are calculated.

31

 By performing this intermediate step using equation 3.5 to reduce the FOV of the imager, the feature

lists will contain fewer patterns in the database and star algorithms will require less iteration through the

F.L. to obtain a star identification. However, this decreases the ability to obtain large numbers of fixed

points for verification.

C. Image Spots to Spot List

 The next phase in identification development was to obtain usable star information from the imager to

input to the identification algorithms. The way in which these images were obtained is explained in detail

in Chapters 5 and 6.

 For experimental data, each image contained locations of illuminated pixels which were centroided and

converted to 3-dimensional unit vectors [56]. These vectors were then indexed and called spots. A spot can

be defined as being an observable star or noise on the pixel plane. For simulation data all the image data

exists as 3-dimensional unit vectors. These spots are placed in a temporary database called a Spot List and

are referenced by their index number. This spot list is removed and recreated with the instance of a new

image. These spot lists may contain false star spikes, yet when passed to the identification methods the

algorithms will not know which are false prior to identification. A simple example of how the spot list

appears is shown in Table 3.2.

Table 3.2 Spot list format

Spot Index X Y Z

1 -0.0386 -0.145 0.9887

2 0.1115 -0.0276 0.9934

3 0.0071 -0.0152 0.9999

4 -0.058 0.0299 0.9979

5 -0.0624 0.1241 0.9903

n -0.0741 0.2006 0.9769

32

II. Development

 This section describes the process of constructing the star identification algorithms, processing of spot

data, verification techniques and voting algorithm.

A. Spot Processing and Verification

 It was mentioned earlier in Chapter 2 that the three main star methods used will be the Liebe Lost in

Space algorithm, Mortari’s Pyramid algorithm, and Tichy’s Two Star method. Of these, five variations

were created by varying techniques in feature retrieval and validation. With each method a type of spot

processing and verification processing are mentioned. The star processing refers to the manner in which the

algorithm forms patterns from the spots and is done prior to the identification process. The verification

processing possesses three groups: None, External, Internal. These are done as the last step in spot

identification.

B. Spot Processing

1. Basic Processing

 A basic type of spot processing is defined as an algorithm that forms spot patterns using a partial

amount of spots relative to any given spot in the image. This is expressive of Liebe’s and Mortari’s

methods which use a central spot and two neighboring spots, or use only a fixed amount of the available

spots in the image.

2. Comprehensive Processing

 A comprehensive type defines an algorithm in which all possible patterns are created with all usable

spots in an image.

C. Verification Groups

1. Internal Verification

 Internal verification uses a subroutine in the main program of the identification algorithm which

compares the solution to a spot in an image to the solutions of the other spots it has already analyzed. There

is no other database used to compare results and no other function calls.

33

 Internal verification can also refer to the use of additional spots in the image to verify the condition of

a group of spots, such as is used in the Pyramid algorithm. The group of spots is the primary focus of the

algorithm, which obtains all information about that group, but then uses one or two other spots as a means

of comparison to ensure that this group is within the correct quadrant of space. Internal uses a system of

Tagging spot results and returning the most likely candidate solution.

 Tagging is the process of obtaining a solution to a spot based on a pattern as compared to the feature

list. From one pattern a spot might have a value of Hip 1, but from another pattern the exact same spot may

be given a value of Hip 2. The most frequent value of that spot is tagged as the correct solution.

2. External Verification

 External verification requires the use of multiple catalogs and additional subroutines or external

functions as supplements to the main function of the identification algorithm. With external verification,

the groups of spots are measured against both the feature list and the main Hipparcos catalog. The method

used in this study is a Voting technique that utilizes a series of steps to compare patterns versus the feature

list, obtain Hipparcos values for each spot, then contrasts these spot solutions to the sub-catalog to ensure

that the results given are in the same sector of space, thus providing a cross-check against incorrect

solutions that might of escaped earlier. External uses both tagging and votes to analyze spot solutions.

 The tagging of spot values is first; then during the verification phase, each spot value is compared to

the next spot in the list and against the sub-catalog. If the two spots correspond to each other, each is given

a positive vote. If the two spots do not match with what the sub-catalog contains, then they are given a

negative vote.

3. Voting Algorithm

 Due to the extensiveness of the voting algorithm, and the benefit it provides in verification and

validation, special mention is made here in regards to its usage and development.

 The Voting Algorithm is a three stage process by which the patterns created in the Star Identification

Algorithms are compared to the feature lists of each method, matches are recorded (see Chapter 4I), all

possible Hipparcos numbers for a spot are listed and identified, and the final identification is voted and

verified against the sub-catalog.

34

 By implementing the rigor of a Voting Algorithm, any pattern of 2, 3, or 4 stars can be meticulously

analyzed and verified using unaltered data given by the Hipparcos sub-catalog and will provide a higher

degree of confidence in solution identification and accuracy. For consideration, the Voting Algorithm when

in doubt concerning the identity of a spot on an image is able to gauge the probability of a spot’s various

solutions and verify against all other spots in the image. If there arises two or more solutions of equal votes,

then the Voting Algorithm reports that there is no unique solution for that singular spot and it is rejected

without inhibiting or harming the solutions of the remaining spots.

a. Stage 1: Pattern Matching

 The Voting process begins with gathering all patterns developed by the preceding identification

routine, such as the Comprehensive Triad - Brätt Algorithm (sec. III.E pg. 42), and compares all features in

the pattern to the feature list, and obtains an index, or indices, of the locations of all possible matches for

that pattern. These indices are gathered and a list of all possible Hipparcos numbers that match the spots in

the pattern are retained until Stage 2 of the program, as shown in Figure 3.6.

Figure 3.6 First stage of voting listing of all possible pattern matches in a feature list

35

 During the second block in the previous figure, the addition of the catalog search tolerance can

severely impact the results of the identification and voting. As the bounds for searching the Hipparcos

database increase, the number of possible matches for each pattern is also increased, thus augmenting the

number of possible solutions for an image spot and the probability of identification error. More will be

mentioned on this searching criterion in Chapter 4I.C.2.

b. Stage 2: Spot Identification

 With the list of Hipparcos numbers associated per spot, the second stage gathers all the unique

Hipparcos stars and TAGS the number of instances the Hipparcos star is found for a singular spot. An

example of this would look like the following (Tables 3.3 and 3.4):

Table 3.3 Example of Hipparcos numbers found for a single spot

Pattern # 1 2 3 4 5

Hip ID for
spot n

744 51585 744 744 6123

Table 3.4 Example of tagged Hipparcos numbers and identified result

Tags Hip ID

3 744

1 6123

1 51585

 From the two tables above (Tables 3.3 and 3.4), assuming the program is processing spot n of the

image, then all the star values found in the feature list for each of the patterns where spot n is located are

tagged and the value with the most tags is found to coincide with the Hipparcos number 744. This process

continues until all spots in the image are identified, shown in Figure 3.7.

36

Figure 3.7 Second stage of voting where Hipparcos numbers tagged and identification of spots

c. Stage 3: Voting Verification

 Once Stage 2 concludes the identification process, the imaged spots are prepared for final verification.

Each spot in turn is taken and the dot product between it and the other spots is calculated. With this

calculation, Stage 3 also retrieves the dot product between the Hipparcos ID’s that were listed in Stage 2. If

the angles (or features) between the spots and between the Hipparcos sub-catalog ID’s match, within the

given tolerance, then a positive vote is given to both spots, else a negative vote is given to the secondary

spot being used for the analysis. These votes can be weighted to adjust for various camera aspects.

 At the end of calculating votes, if the overall vote for a spot is greater than zero, it is recorded and the

Hipparcos star matched in Stage 2 is passed as the acceptable solution to the spot; else if the vote was

negative, or if there was no unique Hipparcos star matched in Stage 2 to a spot, then the spot is passed with

a zero for the Hipparcos solution.

 This final stage, seen in Figure 3.8, removes any possible doubts as to the identity of a spot in the

camera image and validates it against the possibility of two identified spots having solutions outside the

quadrant of space in view. The benefit to this approach is the use of two independent databases of stars,

though the disadvantage is the additional processing time required for the operation.

37

Figure 3.8 Final stage: Verification of identified spots against Hipparcos numbers found in catalog

database

III. Implementation of Star Identifications

 Of the methods discussed in Chapter 2, the two that have been the most tested with respect to space

flight have been Liebe’s Lost in Space [42], [57], [58], and Mortari’s Pyramid [39],[47],[48],[50],[59]

algorithms. It was decided to use these two as the basis of study based on their feature design using angular

distances between observed stars (image spots), which will be measured as 3-dimensional unit vectors, and

the use of planar angles (i.e. interior angles). The Two Star Algorithm by Tichy [54] which contained a

useful verification sub-program that was motivated by Kolomenkin’s voting scheme [53] will also be used

because of its additional robustness to false spots.

 Variants of these methods will be created by modifying the code slightly to build new algorithms for a

case study. With Liebe’s and Mortari’s methods being so rigorously examined in the past, these will

provide a firm foundation for developing Star Identification Algorithm testing in addition to using

Kolomenkin’s voting scheme to validate star identities.

38

A. Method Permutation Overview

 Listed below in Table 3.5 are the LISA’s with the number of features they create in each pattern, their

processing type, and verification type. Shown as well is the general output from the identification

algorithms as would be given to the spacecraft.

Table 3.5 Overview of LISA methods and permutations

 Star Processing Verification Processing

Method # of features Basic Comprehensive None Voting Internal

Two Star 1 X X

Liebe 3 X X

Liebe Voting 3 X X

Brätt 3 X X

Pyramid 6 X X

Comp. Pyramid 6 X X

Mod. Pyramid 6 X X

Pyramid Voting 6 X X

 From Table 3.5 it can be seen that several more permutations exist and would be useful for further

research. Again it is mentioned that all the identification methods receive 3-dimensional unit vectors given

by an image as a variable and return an array listing the number of tags or votes per spot, the Hipparcos

value obtained, and the 3-dimensional vector location of that spot in the image, as seen in Table 3.6. The

methods do not accept 2-dimensional vectors at this time.

Table 3.6 Example of end result unit vector output of a star ID method

Votes Spot Hip ID X Y Z

15 1 46733 -0.19671 -0.29959 0.93357

15 2 48319 -0.11745 -0.29103 0.94948

-5 3 5663 0.1713 -0.29926 0.93867

-5 n-1 0 -0.42261 0.13457 0.89626

-2 n 0 -0.28967 0.36942 0.88296

39

B. Two Star Dot-Product with Voting Algorithm

 This method was previously discussed in Chapter 2II.O where it was defined as being dependent on a-

priori attitude knowledge. This was modified to disregard initial attitude information and act as a LISA

(Lost in Space Algorithm). This was done to provide comparative results with Liebe’s and Mortari’s

algorithms which use no prior attitude information.

 Additionally, the algorithm’s indexing and array matching routines were modified using improved

programming techniques to speed the identification process and maintain consistence across programs. The

voting algorithm that was used was also modified to accept 3 star inputs. This method uses comprehensive

spot evaluation and external verification.

C. Liebe’s Lost in Space Algorithm

 Liebe’s method has been discussed earlier in Chapter 2II.F and the general ideology outlined. The

algorithm uses a basic processing style and no internal or external verification, solely tagging when

comparing to the feature list. Furthermore, the algorithm uses no truncation when generating the feature

list; the fact that Liebe chose only the nearest two stars to a central spot automatically shortens the

database. The model of the method is shown in Figure 3.9, with Figure 3.10 demonstrating Liebe’s feature

creation. Furthermore, it must be noted that in Liebe’s analysis he uses a FOV range of 8 to 36 degrees.

This research will use a FOV of 50 degrees. Liebe uses basic star processing and internal verification.

D. Modified Liebe Algorithm (Inclusion of Voting)

 This algorithm uses the methodology of three spots and three features per pattern and again chooses

only the nearest two neighboring spots to a given Central-Star, as in the original Liebe, thus maintaining a

basic processing type. But rather than assuming that the two stars nearest to the Central-Star are correct, the

method uses an external verification to ‘vote’ if the obtained solution is physically possible or reasonable.

The advantage is in using the magnitude reduced sub-catalog as an additional resource for verification.

40

Figure 3.9 Basic flow diagram of Liebe’s method

Figure 3.10 Liebe’s method in 3 dimensions showing star 1 as the Central-Star with 1 and 2 as the

primary features and as the Interior (secondary) angle

41

 Where the feature list is used to measure and compare patterns, the Voting Algorithm (see Chapter

2II.N) verifies the solutions found are within the given criteria set forth by the search tolerance, which will

be discussed in detail in Chapter 4I.C.2. Figure 3.11 shows the pattern comparison of the Liebe with Voting

algorithm.

Figure 3.11 Pattern comparison to feature list database

 The voting method is an added redundancy against false identification. It is anticipated that the

accuracy and confidence of the identification solution will be superior to that of the Lost in Space method

by itself, yet it is still subject to false identifications of stars due to its limited approach to image spot

processing. The flow diagram of this method is the same as Figure 3.9 and the Search-FeatureList-

compare-angles block of Figure 3.9 can be expanded to show how the features are compared to the feature

list and sub-catalog, as seen in Figure 3.11.

42

E. Comprehensive Triad with Voting - Brätt’s Algorithm

 With the methodologies and strategies learned from constructing Liebe’s method, and the notion of

voting, the Comprehensive Triad with Voting was assembled using all possible combinations of the spots

found in the image and organizing them according to the smallest primary angular feature, θ (Figure 3.12).

Figure 3.12 Logical flow diagram of Brätt Algorithm

 The flow diagram shown above shows the Voting Algorithm as its own block in the structure of the

algorithm. The organization of the patterns according to the smallest θ is simple, yet critical to the accuracy

of the algorithm. The feature list for this method is unique compared to the feature lists of Liebe and the

Two Star method. Where the feature list of Liebe is also ordered on θ, the number of patterns created is

limited; however, the feature list for this algorithm contains all possible patterns between stars in a given

FOV. This allows for a far greater approach in verifying the identity of the spots in an image. The use of a

comprehensive processing and external verification is presumed to obtain a more precise solution.

43

F. Constrained Pyramid Algorithm

 In Chapter 2II.J the Pyramid algorithm was presented. It is stated here that this is not the true Pyramid

algorithm, but an interpretive construction based on the information provided by Spratling [39]. The

original uses a k-vector search technique [48] that is not used in this research. A full analysis of the

behavior and characteristics of the true Pyramid algorithm cannot be provided, but a likened star processing

and form of verification used by the Pyramid algorithm can be compared to the other algorithms tested.

 Unique qualities that have been changed to the Constrained Pyramid algorithm are its termination

process (Figure 3.13), internal validation using a fourth image spot, and intensive feature evaluation.

 Rather than attempting to identify each spot in the entire image, the algorithm will establish one

Pyramid of 4 spots at a time, and if a Pyramid is successful in matching with known stars in the feature list,

it will identify solely those spots and terminate the program, giving only four star identifications and

positions as a result.

Figure 3.13 Logical flow diagram of Constrained Pyramid algorithm

 This early return procedure reduces the time required to identify the image, and with four stars it would

not be difficult to obtain a quaternion solution, however, the quaternion would not be as precise as one

given by an identification method that could evaluate all observed stars correctly in the entire image.

Additionally, if all four spots selected for a Pyramid are false but similar to a pattern in the feature list, it

would return an erroneous attitude solution.

44

 The internal validation using a fourth spot in the image has been discussed, but with it comes the

possibility of increasing the number of evaluative features. Mortari states that his algorithm uses only 6

features (Figure 3.14) for identification out of a possible 24. These additional features are used in this

analysis to further affirm and correlate image patterns to the feature list as his implementation of

verification is unknown. These 24 features, after tolerances are applied, create an increased constraint on

spot orientation displacement during identification, thus the name of the method.

Figure 3.14 Depiction of Pyramid pattern creation where spot 1 is the apex, and spots 4 and 5 are the

next ‘4th spot’ for verification consideration

 The k-vector searching enhances the ability for an identification method to search through the feature

list quickly, yet it was desired to use a more simplistic searching method as the primary focus is to compare

solution ability between different algorithms and not so much the ability to search through the feature lists

quickly. The k-vectoring technique could be used on any of the algorithms in a future work.

G. Comprehensive Pyramid Algorithm

 If one spot could be used to validate the image with three spots comprising the base, then it might be

possible to use additional spots to validate. Because of this desire and motivation to evaluate all spots in a

given image, the Comprehensive Pyramid and Modified Pyramid (sec. H) algorithms were created.

 The Comprehensive Pyramid follows the same 24 feature requirement and 4-spot Pyramiding as the

Constrained Pyramid. It differs by continuing the spot search and analysis of the image as a comprehensive

45

type processing, shown in Figure 3.15, rather than terminating with the first instance of a solution. This was

done to test the robustness of the Pyramid program and assess if it could be used to identify all spots given

the added constraints. This is a recursive methodology as it will overlap multiple times the spots it has

already identified with new spots found. Thus, it does not provide the opportunity to validate a spot group

or selection based on all the other spots in an image; however, it may find that there is a higher probability

that one of the spots previously identified correlates to a different solution than previously given.

Figure 3.15 Logical flow diagram of Comprehensive Pyramid algorithm

 The occurrence of an incorrect solution to a spot replacing a correct solution is highly undesirable as a

correct solution may be overwritten by an incorrect assessment and never repaired. Though one would

think that by recursively checking all existing spots that the solution would be validated, yet it is

anticipated that this procedure might be unable to maintain hold on the previous solution to a spot and

compare it to its new solution. Thus, it is a semi-validated solution, and is assumed that it will be weaker

than the Constrained Pyramid algorithm itself.

H. Modified Pyramid Algorithm

 Due to the high possibility of error from the recursive approach of the Comprehensive Pyramid

algorithm, where it would have the ability to overwrite the correct solution to an identified spot, a second

46

modification to the Pyramid method was created by using the four primary spots identified in the

Constrained Pyramid algorithm as the basis for all the verifications of the remaining spots.

 Having identified the first four spots, the program enters a sub-function just before the return statement

seen in Figure 3.15. These four identified spots will not change nor become overwritten during the process,

but are used to create six additional triads using a fifth spot. In this manner all but one spot is known during

the identification process. Once the 5
th

 spot is verified, the search continues to the next spot in the sequence

and performs the same operation, keeping the first four spots intact. This is shown in Figure 3.16.

Figure 3.16 Flow diagram of Modified Pyramid algorithm

 Once all spots are identified, the sub-function terminates returning the identified values of all the

image spots. It is anticipated that the modification made will be far more accurate than the Comprehensive

Pyramid algorithm. This method uses the same feature list as the Constrained Pyramid algorithm, however,

because of this more intensive internal verification process, it is believed the algorithm will take the longest

to complete.

47

I. Pyramid with Voting Algorithm

 It was theorized that by including the same type of voting procedure as the Two Star, Liebe with

Voting, and Brätt algorithms, that the functionality and accuracy of the Constrained Pyramid algorithm will

be enhanced. The four spots identified by the method will be verified against the magnitude reduced

catalog. This operation would be a redundant verification procedure, as the Constrained Pyramid algorithm

already uses an internal verification, but it is anticipated that it may improve solution ability versus false

spots. Figure 3.17 shows a basic flow diagram of the Pyramid with Voting algorithm.

Figure 3.17 Logical flow diagram of Pyramid with Voting

 This algorithm will display a solution exclusively for the four spots identified by the Constrained

Pyramid algorithm and will return zeros for all other spots. Though the addition of the voting method is an

additional use of processing time, it is offset by the short timeframe of gathering a single Pyramid group of

stars and voting on solely those four, rather than the entire image. This method uses the same feature list as

the Constrained Pyramid method.

48

IV. Star Camera Selection

 The Aptina [28],[56], MT9P031 imaging system was selected for use in this study for its mono-color

formatting which removes the issue of variable spectral intensities. This camera is comparative to the cell

phone cameras mentioned in Chapter 1 at 381 mW consumption, 5MP resolution with a 50
o
 FOV, and its

less than 0.5U size. It was also chosen for its 2.2 μm pixel dimensions and user controlled variable frame

rates.

49

CHAPTER 4

TESTING CRITERIA

 In this chapter the qualifications for solution acceptance are stated and described, and a premise for

testing and analysis outlined. Detailed results of solution behavior of the star identification algorithms are

presented in Chapters 5 and 6. Evaluation of the Lost in Space Algorithms (LISA’s) is conducted outside of

the main program of the identification methods.

I. Solution Evaluation

 The accuracy of a solution from a given algorithm is of primary importance in this analysis. The

accuracy of the identification solution is evaluated through:

 Correct/False/Empty Image Solutions

 True/False/Neutral Spot Matches

 Minimum Required Spots for Solution

 Probability of Error

A. Image and Spot Evaluation Criteria

1. Internal – Spot Match

 A Match is the set of individual identifications found for a spot and star pair in an image and includes

the number of Tags or Votes for that pair. For the simulated and experimental data used in this study, the

exact identities of the observable stars (spots) in the images are known and used to measure success.

a. True Match

 Success criteria: Must return a singular Hipparcos star solution for a given spot in an image that

corresponds to the true identity of that spot and must receive a positive vote greater than zero, or receive a

minimum of one tag.

50

b. False Match

 Fail criteria: Contains a singular Hipparcos star solution for a given spot in an image and returns a

positive vote or tag but is not the true identity of the spot in the image.

c. Neutral Match

 Returns one or multiple Hipparcos solutions for a spot and returns a vote less than or equal to zero.

Table 4.1 below better illustrates how these matches are formed.

Table 4.1 Example of matches

Spot Votes HipID Found HipID True Match Result

1 >0 H1 H1 TRUE

2 >0 H2 H3 FALSE

3 ≤0 H4 or 0 H6 NEUTRAL

4 ≤0 H5 or 0 0 NEUTRAL

5 >0 H7 0 FALSE

6 >0 0 0 TRUE

2. External – Image Identification

a. Correct Solutions

 An identification method must return a solution in which no false matches have been encountered and

the minimum number of true matches for obtaining a solution has been reached.

b. False Solutions

 An identification method returns a solution containing any number of false matches from an image or

returns fewer than the minimum required number of true matches.

c. Empty Solutions

 In the course of identification, the algorithms may come across images where each spot is identified

but during the algorithms’ validation and verification protocol all the identifications are proven to be

neutral matches. The solution in this instance is returned as a list of zeros for the identity of the spots in the

image and is treated as an Empty Solution. In this situation the solution does not impair algorithm

51

suitability; instead the imager system should be designed to take another image and again attempt to

identify its attitude.

B. Minimum Required Stars for Solution (MRSS)

 To obtain a valid image solution, a limit was set stating that a minimum of four true matches must be

acquired. This number was chosen based on the restrictions of the Pyramid algorithm described by Mortari,

which required a minimum of four spots in an image to initiate the program and achieve a solution. This

requirement was then passed to the additional algorithms to maintain analogous results.

C. Probability of Error

 The percent failure of a solution returned by the LISA’s was determined to be the most advantageous

method to produce a structure for solution behavior analysis. Using the construct that a single match

resulted in a complete solution failure, entire sets of images can be quickly evaluated and compared among

algorithms. This solution error essentially implies a Go or No-Go qualification for an algorithm.

 The averaged solution failure of each algorithm offers a means of comparison and judging of solution

attainability. This probability of error is a function of:

 FOVMTeTNfPE cencatf ,,,,
 (4.1)

 Nf – Number of false spots in the image

 Tcat – Catalog tolerance range

 ecen – Error in centroiding

 MT – Magnitude threshold

 FOV – Field of view of the star camera

 Number of false spots, centroiding error, and incorrect tolerance ranges are the primary sources of

error that will affect the solution of the identification methods. These will be used to determine at what

point the algorithms will fail.

52

1. False Spots

 During flight a satellite imager will encounter noise on the image plane (e.g. passing asteroids, other

satellites, planets, or space debris), and may have broken or un-calibrated pixels. These sources of noise

create false spots (or false star spikes) in the image plane yet do not exist in the catalog database of known

stars. Incorrect identification of these false spots will adversely influence the solution of the algorithm and

cause satellite course deviations.

2. Catalog Tolerance Range

 This specifies the amount of variability in the angles of comparison between features in the patterns

built by the algorithms and those in the Feature List database and sub-catalog. No atmospheric or lens

distortion effects will be removed from experimentation with the Aptina, therefore, the Catalog Tolerance

will be used to correct for these deviances as a means of circumventing additional process time needed for

image correction and to ascertain if image perturbations could be described by a single overall error bound.

Figure 4.1 visually describes how a feature, or angle, derived from a pattern is widened using the catalog

search tolerance.

Figure 4.1 Example of tolerance bounds on a feature and overlapping of features in feature list

53

 The same tolerance is applied to the features in the feature list, shown as large thick black I’s. It can be

seen that one angle in the feature list is within the boundary of the pattern angle, but because of the larger

boundary, an angle just above in the feature list is also called because its boundaries overlap with the

feature from the pattern. Thus, this feature in the pattern, and the spot associated to it, have two possible

solutions. This further illustrates that a set range of tolerance values must exist for the algorithms,

otherwise too many probable solutions could exist for any specific spot in an image.

3. Centroiding Error Range

 Centroiding error is the amount of variation to be added to the centroid position of each spot. This is

used solely for Simulation data. For simulating the behavior of a real imager with atmospheric conditions

and pixel distortion due to lenses, heating and cooling effects, and noise, each spot will be repositioned in

the image with a random angular displacement (using the Monte Carlo method) based on the selected

Centroid Error inputted. Figure 4.2 shows that once a centroid error is integrated, the true position of the

spot will be shifted in any direction within this boundary.

Figure 4.2 Example of an image spot centroid and the possible area of existence given a centroid

error range

 For example, if a centroid error of 1 μrad is selected, then each spot will be moved randomly between

0 and 1μrad in a random direction. This denotes that any two spots in an image may be at most 2 μrad of

radial distance from one another.

54

II. Computational Considerations

 One of the desires in identification systems is to obtain solutions with swiftness. Ideally, it is preferred

that the algorithms perform in real-time. These Lost in Space Algorithms are not real-time solutions, yet,

with the use of Kalmen filtering the time loss issue could be accounted for. The measurement of speed is a

function of the size of the sub-catalog database DCat, the size of the feature list DFeat, the number of spots in

an image S, and the efficiency of the algorithm E.

 ESDDfSpeed FeatCat ,,,
 (4.2)

A. FLOPS, TIC-TOC, and Profiling

 The speed with which an identification algorithm can develop a solution will be measured using the

Profiling subroutine in MATLAB where the number of seconds taken from when the input was given to

when the solution is outputted will be recorded. The Profiling command option will be used due to its more

comprehensive analysis. Despite the fact that it includes an overhead timing to the algorithms, it was

preferred rather than using TIC-TOC functioning as this will add extra lines of coding to each algorithm

and cannot give detailed information regarding coding speed.

 MATLAB has removed the use of FLOPS and operation counts since version 6.0, thus the ability to

measure directly the efficiency through the number of floating point operations in each of the algorithms

will not be calculated.

B. Algorithm Order and Feature Creation Time

 The size of the Feature Lists will be recorded to determine which algorithms can search for matches

the quickest. As the magnitude threshold of the system increases (e.g. 3 → 3.5 → 4) the number of possible

stars in the line of sight of the imager exponentially increases, thus increasing the amount of time needed to

create features and patterns, and increasing the database sizes of the Feature Lists. Below in Table 4.2 is the

progression of each algorithm based on the number of stars in the FOV of the imager.

55

Table 4.2 Algorithm order and feature list sizes based on n stars in FOV

Method Order # of patterns in list

Two Star)(2nO
 !22

!

n

n

Liebe)(3nO n

Liebe Vote)(3nO n

Brätt)(3nO
 !32

!

n

n

Pyramid)(4nO
 !36

!

n

n

Comp. Pyramid)(4nO
 !36

!

n

n

Mod. Pyramid)(4nO
 !36

!

n

n

Pyramid Vote)(4nO
 !36

!

n

n

 The Constrained Pyramid algorithm contains a return line that terminates the program after the first 4

spots in the image have been identified and verified. Thus, the pattern equation in Table 4.2 holds for the

feature list database but not for the overall time-estimate of the algorithm. Since the Modified Pyramid and

Pyramid with Voting algorithms are the same as the Constrained Pyramid with respect to pattern

generation, with the addition of a sub-function, they follow very closely the same order of time during

identification.

III. Algorithm Robustness

 Robustness is the algorithm’s ability to handle abnormal situations. The issues facing these algorithms

can be encompassed into two primary divisions: Error Prevention and Computational Failure.

A. Error Prevention

 Each algorithm has unique means of preventing possibilities of errors from entering the final solution

output. Such situations of error robustness include:

56

 Competence to negotiate false detections in the image

 Proficiency of validating abnormal solutions prior to output

 Ability to operate despite abnormalities in input

 To negotiate false detections, The Two Star, Liebe with Voting, and Brätt algorithms use the Voting

method to rigidly confirm, or remove potentially invalid, identities. Additionally, the use of 3 stars for

pattern creation gives the Liebe with Voting and Brätt algorithms additional competence in error

prevention, rather than the use of two stars only.

 The Brätt algorithm additionally constructs patterns between all spots in the image, whereas the Liebe

with Voting limits the combinations of patterns to strictly the two most adjacent spots to a target, or central

spot. This limitation removes the ability to verify the identity of the spots early in the second stage of the

voting process, while the Brätt algorithm uses all combinations and the second stage of the voting process

to enhance the verification phase, thus further removing potential inaccuracies.

 The Pyramid-type algorithms allow the use of a fourth star and three additional features in a pattern as

their means of error prevention. With the Pyramid algorithm terminating early with the first likely

combination of four spots, the algorithm reduces the chance of encountering false spots but also reduces the

ability to validate across the entire FOV of the imager.

B. Computational Failure

 Computational failure refers to circumstances in which the algorithms will be halted or crash during

star identification. Such instances of robustness can be measured as:

 Ability to not break down easily or not be wholly affected by a solution failure

 Negotiation of exceptional circumstances such as too many or too few spots

 Failure if no matches to spots, patterns, or features are found

 Each algorithm is equipped with conditional statements to prevent empty variables from passing

through the code, to deal with images with insufficient spots, and to phase out incomplete solutions.

 However, due to the nature of the sub-catalog and feature list databases, if the search tolerance (sec.

I.C.2) is large, then the number of possible identities for a single spot multiplies and causes the code to

57

become retarded in its identification process. If the number of spots in an image are also very large, the lag

in solution time becomes sizeable and could cause system failure depending on the system being used.

 No upper limit is set to the number of spots in an image that any of the algorithms can solve, yet from

Figure 3.4 it can be seen that the issue of an overabundance of spots will not exist.

IV. Memory and Disc Space Management

 Crucial to spaceflight is the compressibility of the identification programs to increase memory space

for scientific instrument systems on board. As such, the desire with the Lost in Space Algorithms was to

condense the codes and databases as much as possible. These algorithms were created using MATLAB

functions and files. The program sizes can be further reduced once they are compiled and optimized for

spaceflight.

A. Short-Term Usage

 Each algorithm should have minimal RAM usage and outputs that do not overflow or processes that do

not use substantial amounts of RAM. The programs were created to output directly to the command line a

structured variable containing the number of corresponding votes to the star identification, the spot number,

star identification value, and spot location in the image. These algorithms can be easily modified to output

results to a number of various output formats such as: *.MAT, *.DAT, *.TXT, etc., which can be

maintained indefinitely if desired, or replaced with the solution of the next image.

B. Long-Term Usage

 The databases and actual algorithm codes will be the only permanent files that will be placed on the

hard-drive of a given spacecraft. There is no other need for long-term storage access.

C. Feature Lists and Patterns

 To reduce the amount of storage needed, the databases ought to be as small as possible yet well-

defined and indexed to avoid solution error. As well, the main Hipparcos catalog should be truncated to

include only the set of stars that the imager is able to detect.

58

CHAPTER 5

SIMULATION TESTING

I. Simulation Testing

 To validate the criteria listed in Chapter 4, the Lost in Space Algorithms were tested against 12,000

simulated images. The simulation codes can be found in the appendix. This simulation used information

based on the Aptina imager in this study.

 The images were split into two magnitude threshold sets of 3 and 3.5. 100 randomized simulated

camera positions were chosen using a Monte Carlo randomization. Figure 5.2 shows these random

locations of the images taken using 3.5 magnitude stars and brighter. The same image for magnitude 3 stars

can also be found in Appendix B. In this chapter, only the simulations conducted using 3.5 magnitude

thresholding will be discussed. Additional figures and data can be found in the Appendix. A depiction of

the manner in which these inputs were added is shown in Figure 5.1.

Figure 5.1 Flow diagram of simulation model with random Monte Carlo inputs

 Multiple instances of catalog searching tolerances, centroiding error, and false spots were added to

each random camera position. The direction (not magnitude) of centroiding error and location of false spots

59

were randomly inserted into the images. Centroiding error was used to simulate atmospheric and lens

distortion effects that might be experienced during experimental testing.

 Catalog tolerance was applied to the features in the identifications methods during pattern comparison

to the feature list, expressed simply as:

 TiMAXi ,

TiMINi ,

 (5.1)

(5.2)

where
MAXi, and

MINi, represent the maximum and minimum values of the feature i once the tolerance

T has been applied. The algorithm then searches the feature list for all features between this maximum and

minimum value. The results from the search are then marked as possible solutions to the spots being

investigated. The catalog tolerance ranges were selected to be from 1 to 5 mrad, which corresponds to 3.44

to 17.19 arcmins of deviation. This was selected to show a worst case scenario that might be anticipated if

using a cell phone camera.

 Throughout the simulation process, false spots were added to the image plane at random locations also

using a Monte Carlo randomization procedure. Between 0 and 3 false spots were placed at a time to all

instances of a simulation image. This meant that each randomly chosen image was solved four times based

on false spots: once with no false spots, once with one false spot, etc. This was done to verify whether the

algorithms would be able to remove random intrusions.

 This range was selected as being an appropriate number to simulate objects that may pass by the FOV

of an imager in space that would cause false star spikes. With an average of 27 stars in any image, the false

spots could comprise one ninth or more of the spots inputted on the simulated image plane.

 With each image, the simulation solved the identity of each spot using all the identification algorithms

and evaluated solution probability, processing time, precision, and percent of empty solutions. Figure 5.3

shows the resulting failed solutions of the algorithms averaged across the number of false spots and

centroiding error (see Appendix B for 3D figures of solutions as functions of centroid and catalog

tolerance). Figure 5.2 shows the 100 random locations used in the experiment.

60

Figure 5.2 Camera positions of 100 random simulated images with approximate range of imager

FOV as a Miller cylindrical projection. 3.5 mag. star field.

A. Percent Failure vs. Catalog Tolerance

 Taking the incorrectly solved simulated images of three of the algorithms and averaging them against

the number of false spots and against centroid errors, gives the following figure. This is the probability of

error based on the searching tolerance.

 To aid in the interpretation of the figures, it is stated that the plots of failed matches express a sub-

division of the no-solution (or false solution) plots. The percent of false matches describes how many of the

stars, on average, in an image have failed for a given solution failure.

61

Figure 5.3 Failed ID algorithms averaged against centroiding and false spots

 It is evident from Figure 5.3 to see the Two Star, Liebe, and Liebe with Voting fail severely. It can be

stated that these are highly sensitive to the searching tolerance and have a high probability of failing at the

given tolerance ranges. What can also be seen is the Liebe with Voting algorithm does improve the

performance of the standard Liebe algorithm, both in reducing the number of failed solutions and the

number of empty solutions. Figure 5.4 shows acceptable ID algorithms.

62

Figure 5.4 Acceptable ID algorithms averaged against centroiding and false spots for mag. 3.5 star

fields

 Interestingly, it appears in Figure 5.4 as though the Brätt algorithm does not fare as well with very low

searching tolerances, but remains stronger than the other algorithms with increasing range. When a failed

solution appears but there are no false matches, then the algorithm identified less than the MRSS spots

correctly and the rest were rejected during the verification phase. This signified that there were enough

spots in the image to obtain a solution; however, the solution was inadequate according to the MRSS

restriction imposed.

63

 At the 1 mrad range, the Brätt algorithm consistently obtains a minimum of 3 correct matches without

encountering a false match. This however is below the standard of 4 matches that was selected based on the

nature of the Pyramid type algorithms, thus the solution behavior would improve if the MRSS was set to 3,

not 4.

 The Constrained Pyramid and Pyramid with Voting follow each other exactly in the percent of failed

solutions, but the Pyramid with Voting has far better precision (number of correct matches) than the

Constrained Pyramid algorithm. Interestingly enough, the Modified Pyramid algorithm fails sooner, at 4

mrad. Surprisingly, all the Pyramid type algorithms return the same probability of an empty set of solutions

for the tolerance range, which follows a decreasing quadratic trend. These empty solution sets are attributed

to the highly constrained requirement for the algorithms to satisfy 24 features, rather than 6. The Brätt

algorithm however never returns an empty set, showing that it returns a higher number of solutions to work

with. All the algorithms have a less than 0.2% probability of image solution failure.

 By looking at the average number of failed matches among the algorithms (Figure 5.5), it can be

clearly seen the amount of improvement in using 3 or 4 spots in a pattern versus 2, and the benefit of using

voting as a means of verification in star identification.

Figure 5.5 Failed match comparison of simulated data between algorithms at mag. 3.5 intensity

64

 Though the number of failed solutions of the Liebe and Liebe with Voting algorithms appeared to

slightly decrease earlier in Figure 5.3, in the figure above the amount of falsely identified spots in an image

can be seen to increase with increasing search tolerance. This signifies that at lower tolerance values, the

algorithms have greater restrictions imposed on the star identification and verification, thus many spots that

are identified in the identification phase of the algorithm are rejected during the verification phase. As the

tolerance values increase, the restrictions on identification are relaxed and the number of possible ID’s for a

spot increase, as well as the probability of error.

 Furthermore, from Figure 5.5 it can be said that at a catalog search tolerance of 3 mrad, the Liebe with

Voting method will give a false image solution, though not necessarily containing false matches, nearly

20% of the time. This is certainly not desirable and is regarded as a poor identification method given the

boundary inputs.

 Figure 5.6 shows the average number of empty solution sets returned by the algorithms which

demonstrates the programs’ ability to output a solution during conditions of false spots and centroiding

errors. If an identification algorithm has low false solutions and low false matches, yet a high probability of

empty solutions, then it is still an invalid method.

 From Figure 5.6 it can be seen that all the Pyramid type algorithms return a high volume of empty

solution sets; more especially at 1 mrad. The Two Star and Brätt algorithms return nearly no empty

solutions for the range of catalog search tolerance, though the Two Star method begins to separate slightly

at 5 mrad. This is valuable as it shows the Pyramid algorithms would need to continually re-take images

and solve them in order to obtain a valid and usable solution. Also it can be shown that the Liebe with

Voting improves over the Liebe method in its ability to obtain solutions as the catalog tolerance increases.

 These figures have all shown the solution behavior of the algorithms based on the overall averaging of

the false spot and centroiding parameters and how well the catalog search tolerance aids in overcoming

these errors.

65

Figure 5.6 Average number of empty solution sets of simulation data for 3.5 magnitude intensity

threshold

B. Simulated Pixel Distortion

 Obviously, with high distortion in the image due to atmosphere, lens, and heating and cooling effects,

the number of false matches of a solution will increase. More particularly will be discussed how the

solutions are affected due to pixel distortion.

 The centroiding errors were calculated based on the radial pixel value of the Aptina imager, ranging

from 1 to 3 pixels of distortion. For the Aptina, .33 mrad is equivalent to 1 pixel of centroiding

misalignment of a spot. The images have been averaged across all false spots and the catalog tolerance

range, thus showing algorithm behavior strictly as a function of pixel distortion.

 The following figures (Figures 5.7 and 5.8) demonstrate which algorithms are not satisfactory

algorithms for the camera parameters. It was shown earlier that by raising the catalog search tolerance it is

possible to overcome pixel distortion errors, though only marginally. At .66 mrad, and higher, a star shown

as a spot in an image has become an entirely new star to the perspective of these methods.

66

Figure 5.7 Average simulation solution failures of failed methods as a function of centroiding error

for 3.5 magnitude threshold

 Figure 5.7 demonstrates that again the Two Star, Liebe, and Liebe with Voting algorithms are not

satisfactory algorithms for the camera parameters. It was shown earlier that by raising the catalog search

tolerance it is possible to overcome pixel distortion errors, though only marginally for these algorithms. At

.66 mrad, and higher, a star shown as a spot in an image has become either unrecognizable or an entirely

new star to the perspective of these three methods.

67

Figure 5.8 Average simulation failures of acceptable algorithms at 3.5 magnitude threshold

 Refining the view to the last 5 algorithms (Figure 5.8) shows the Pyramid algorithms dealing

relatively well with respect to pixel distortion, and the Brätt and Comprehensive Pyramid algorithms

coincide, reaching a maximum of 0.1% image solution failure, once the distortion in the image plane

reached 3 pixels in the Aptina imager. However, the Brätt and Pyramid with Voting algorithms show no

false matches. This means improved internal verification than the other algorithms. This states that the

Brätt and Pyramid with Voting begin to return fewer matches than the MRSS requirement. Furthermore,

the Brätt algorithms returns no empty solutions.

68

 Figure 5.9 expresses if the algorithms have the ability to return a solution. Illustrated are the Pyramid

type algorithms which have a nearly 60% inability to resolve an image at large pixel distortions, whereas

the Two Star is nearly zero, and the Brätt method is strictly zero.

Figure 5.9 Average of empty solution sets for simulation due to pixel distortion, magnitude 3.5

threshold

 From these results, a trend in algorithm performance begins to show. It is seen that the Two Star

method, though able to deliver a solution nearly 100% of the time, would return incorrect attitude solutions.

The same can be said of the Liebe and modified Liebe algorithms, though their failures are not as severe as

the Two Star method.

 With the Constrained Pyramid algorithm, though solutions are returned with rather high confidence of

correct identifications, the number of empty solutions is high. Also, it can be shown from these figures that

the Pyramid with Voting and Brätt algorithms that incorporated the Voting strategy with their identification

maintained excellent results of low to no solution error and no false matching; though the Pyramid with

Voting algorithm follows the same trend as the basic Pyramid algorithm with respect to empty solutions.

69

Thus, some of the algorithms fare well against high pixel distortion, and others fare well with low Catalog

search tolerance. Figure 5.10 shows the overall performance of the algorithms in relation to each other and

shows the Brätt algorithm as the overall best for solution acquisition and identification.

Figure 5.10 Overall probabilities of failure of simulated identification algorithms

II. Computational Impacts

 The times shown in Table 5.1 are a result of processing simulated images in the form of a structured

variable on a Pentium 4, Duel CPU 3.40 GHz processor, with 1.25 GB RAM using MS OS XP Service

Pack 3.

 It must be understood that these solutions were developed using MATLAB version 7.11.0 with *.M

files that were not optimized for flight control, nor compiled; therefore, these speeds and processing times

are not a valid estimate of the actual performance of the algorithms, but are useful as a means of

comparison among each other. To obtain these times, the MATLAB Profiler tool was engaged, hence,

overhead times are included in the results shown. Additionally, the average processing speed of the CPU

70

stayed at 1.6 GHz for simulation. It is anticipated that with optimized flight coding these times would be

reduced by a factor of ten. Table 5.1 shows averaged times for solving simulated data of 6000 images with

an average of 27 spots per image.

Table 5.1 Average time [sec] per image for solution of all simulation data at 27 average spots per

image

 Magnitude Threshold

Method 3 3.5

Two Star 0.0549 0.0622

Liebe 0.0141 0.019

Liebe Vote 0.7179 0.3295

Brätt 6.2604 3.6095

Pyramid 2.5017 3.3252

Comp. Pyramid 14.156 5.8783

Mod. Pyramid 2.7578 3.4005

Pyramid Vote 2.5535 3.3299

 From profiling the algorithms, it was found that 95% of the time spent on any algorithm using the

Voting technique was taken up during the indexing and searching of the patterns versus the feature list

entries. Thus, search times could be significantly reduced using a k-vectoring technique or optimized

searching method [48]. With all Pyramid type algorithms, the majority of the time was exhausted during

the feature list searching as well; however, despite having low analysis time, the time would nearly have to

be tripled in order to output a solution viable for navigation, as can be verified by the number of empty

solutions seen in Figure 5.6.

 Speed of identification can be increased by refinement of the imager to diminish the number of spots

that will be shown on an image. By reducing the number of spots shown on an image this will not only help

in improving the timing, but reduce the probability of error of the algorithms.

III. Memory Usage Results

 As MAT or DAT files, the star identification outputs are just under 1 KB in size. This output is

overwritten after the identification of the next image, thus being maintained in the RAM of the onboard

computer. No other outputs are given. The most intensive use of the RAM was during index searching of

71

the feature list. The total amount of hard-drive space required is shown in Table 5.2 and is subject to the

star magnitude strength of the imager used.

Table 5.2 Total permanent hard-drive space [MB] required

 Magnitude Threshold

Method 3 3.5 4

Two Star 0.57 0.46 0.68

Liebe 0.09 0.15 0.26

Liebe Vote 39.04 16.05 18.08

Brätt 39.04 16.05 18.08

Pyramid 16.04 6.06 7.09

Comp. Pyramid 16.04 6.06 7.09

Mod. Pyramid 16.05 6.06 7.09

Pyramid Vote 16.04 6.06 7.09

 Individually the magnitude reduced sub-catalog database is also subject to the imager used and allows

the flexibility to select which database would be most appropriate. See Table 5.3.

Table 5.3 Sub-catalog database size [MB]

Magnitude 3 3.5 4

Size 0.027 0.042 0.074

 The largest component of the memory system used is taken by the feature lists which vary based on

magnitude, shown in Table 5.4. Truncation of the feature lists was discussed in Chapter 3I.B.2. The feature

lists can also be viewed by how many patterns and features are in each based on magnitude threshold and

algorithm type (Table 5.5). On observing these results, one would ask why patterns for Liebe with Voting

and Brätt algorithms with only 3 features are significantly more numerous than patterns of 6 features. With

the 3 feature patterns, the patterns require a central spot and form an interior angle which is unique between

the set of stars in the sky and changes with which star is targeted first. Hence, if 3 stars are given, the

interior angle of stars 1-2-3 is different than the interior angle of 2-1-3, which differs from stars 3-1-2.

Therefore, the number of combinations is considerable compared to the Pyramid algorithms which do not

prioritize on a central spot; all combinations 1-2-3, 2-1-3, and 3-1-2 are equal to the Pyramid algorithms.

72

Table 5.4 Feature list space usage [MB]

 Magnitude Threshold

Method 3 3.5 4

Two Star 0.533 0.413 0.594

Liebe 0.062 0.101 0.182

Liebe Vote 39 16 18

Brätt 39 16 18

Pyramid 16 6 7

Comp. Pyramid 16 6 7

Mod. Pyramid 16 6 7

Pyramid Vote 16 6 7

Table 5.5 Number of patterns in feature list

Method
Magnitude Threshold Features in

Pattern 3 3.5 4

Two Star 3100 2405 3460 1

Liebe 177 288 518 3

Liebe Vote 115227 46628 55324 3

Brätt 115227 46628 55324 3

Pyramid 30793 11910 14067 6

Comp. Pyramid 30793 11910 14067 6

Mod. Pyramid 30793 11910 14067 6

Pyramid Vote 30793 11910 14067 6

73

CHAPTER 6

EXPERIMENTAL RESULTS

I. Experimental Testing

 The simulation results have shown an estimate and basis for measuring the quality and functionality of

the identification methods. Of greater importance is the actual proficiency of the algorithms with true data.

 An extensive study was made into the retrieval of images from an Aptina [28] imager (confidential

spec. sheet from Micron), the Droid X2 [60] cell phone camera, and DISC [61] imager from Space

Dynamics Laboratory, with primary focus on cellular phone cameras, by Fowler [56]. His study provided a

program that retrieves images from a star camera showing observable stars as highlighted pixels. These

pixels are converted into 3-dimensional unit vector spots which he did by centroiding groups of

immediately adjacent illuminated pixels and thresholding the pixel intensity based on the noise to signal

ratio. Fowler’s program was used in this study to provide the spot inputs for all the experimental data

studied. Fowler’s program permitted the use of Atmospheric and Lens distortion correction which were

both deactivated to test the algorithms against corrupt data.

 In total, 422 images were taken on two separate nights with this Aptina imager over the course of 4

hours per night. The first set of data collected 170 images and was taken October 5
th

, 2012, at an

approximate elevation of 4,600 feet in Logan UT, USA; the second set collected 252 images on November

6
th

, 2012, at the same location.

 Shown will be the results at a magnitude threshold of 3.5 as a means of comparison with the simulation

data in Chapter 5, however, the testing included thresholding of 3 and 4 magnitude star fields as well;

additional figures may be seen in the Appendix (see Appendix BII). The solutions to these images were

taken at higher search tolerances (> 5 mrad) than the simulation data due to pollution, light cloud cover, the

desire to test the limitations of the algorithms at increased tolerances, and the lack of information as to the

amount of distortion that could be expected on the image plane from the Aptina camera.

A. Real Data vs. Catalog Tolerance

 From the October data set it was discovered that the Two Star method performed better than

anticipated with respect to the simulation, reaching approximately 45% solution error at the extreme end of

74

the search tolerance. All the other algorithms performed as expected within the 1 to 5 mrad range, yet show

very distinct behaviors beyond the simulation’s catalog search tolerance range. As can been seen in Figure

6.1, the upper limit of the Pyramid type algorithms exists near the 5 mrad tolerance. The Brätt algorithm

however retrieved no erroneous solutions despite the increase in tolerance. The algorithms behaved as

expected within the range of 1 to 5 mrads, yet all fail beyond this range. The Brätt algorithm is the only

algorithm that maintains itself stable at a probable solution failure of 0%, as seen in Figure 6.1.

Figure 6.1 Average solution failure of experimental data sets for Oct data at 3.5 magnitude threshold

 From the simulation trials, it was expected that the Pyramid algorithms would be more accurate than

what is shown, yet it can be clearly seen at 10 mrad of catalog tolerance all the Pyramid algorithms are

erroneous. It can be shown that the Pyramid with Voting follows very closely the behavior of the

Constrained Pyramid algorithm, with only slightly improved results at the extreme limit of 20 mrad. This

supports the assumption that the Pyramid with Voting would be an improvement over the basic structure of

the Pyramid scheme, though with less improvement than expected.

75

 Comparing these results to the November testing, approximately the same results can be seen in

Figure 6.2, though it is clear that the data is more erroneous than the data from October. Most of the

algorithms behave as expected, with exception that now the Brätt algorithm fails at 1 mrad, and peels

upwards at 15 mrad, It remains under 8% during the entire range (Figure 6.2).

Figure 6.2 Average solution failure for experimental data sets for Nov data at 3.5 magnitude

threshold

 This proves that the Pyramid algorithms are satisfactory within the range of 1 to 5 mrad, and shows the

Brätt method is valid between the range of 1 and 10 mrad; twice the range of the Pyramid processes. As

well, it can be concluded that the Two Star, Liebe, and Liebe with Voting are entirely unacceptable

methods for the Aptina imager, yet, may be suitable for imagers of higher quality where the margin of pixel

distortion is far lower, and thus the search tolerance can be lowered. For additional comparison with the

76

simulation data, the images shown below (Figures 6.3 and 6.4) further confirm the results that were

anticipated.

Figure 6.3 Average false matches of experimental data during Oct test, 3.5 theshold

 Again, Figures 6.3 and 6.4 confirm the results derived from the simulation trials where between 1 and

5 mrad the worst performer was the Two Star algorithm, which reached under 3% false identification in the

simulation Figure 5.3, and an average of 9% in the combined October and November tests. The tests

performed in October and November signify that there existed a greater pixel distortion than anticipated

within the range of 1 to 5 mrad, which can be attributed to the environmental conditions experienced during

the night sky experiment.

 Looking at the November data (Figure 6.4), again it is seen that all of the Pyramid type algorithms and

Brätt method are accurate within the bounds of 1 and 5 mrad, and the Brätt algorithm remains under an

error of 0.46% for a false match as far up as 20 mrad of catalog tolerance.

77

Figure 6.4 Average false matches of experimental data during November test, 3.5 threshold

 Additionally, it must be clarified that the Brätt algorithm, which in Figure 6.2 appeared to fail

within the 1 to 10 mrad range, does not produce any falsely identified stars, or matches, for that range of

tolerance. This denotes that some of the solutions returned contained less than the MRSS of 4 matches in

the star ID output.

 The following two figures (Figures 6.5 and 6.6) are given to provide a means of comparing the

likelihood of the algorithms’ ability to obtain a solution during testing against the simulation estimate. They

show nearly the same trend as the simulation though not as quadratic.

 Strictly for the case of these two experiments, Figures 6.5 and 6.6 show the Brätt algorithm has a 100

% probability of returning a solution between the range of 1 to 15 mrad, and at 20 mrad all but the Two

Star method have nearly a 97% chance of procuring a solution.

78

Figure 6.5 Average empty set for Oct data, 3.5 threshold

Figure 6.6 Average empty set for Nov data, 3.5 threshold

79

 The Pyramid type algorithms behave as expected from the simulation results, showing an extreme

level of empty solutions at 1 mrad. From Figures 6.3 and 6.4, beyond 10 mrad the Pyramid algorithms all

begin failing. However, at 5 mrad there exists nearly 0% probability that the algorithms will fail, with a

reduced amount of empty solutions. Thus, this proves that there exists a tolerance at which these algorithms

will be acceptable in combination with the Aptina imager.

 The next two images (Figures 6.7 and 6.8) show the overall combined performance of all the

algorithms as a function of light intensity thresholding, averaging across the 1 to 20 mrad catalog range.

Figure 6.7 Probability of solution error as a function of magnitude threshold for all algorithms

during Oct test

80

Figure 6.8 Probability of solution error as a function of magnitude threshold for all algorithms

during Nov test

 From Figures 6.5 and 6.6 it can be established that all but one of the algorithms have a high probability

of obtaining a solution to the images given by an imager, and from the last two plots (Figures 6.7 and 6.8) it

can be seen that the Pyramid algorithms manifest improved results at a magnitude threshold of 4, the Liebe

methods do not follow an exact order or preference, the Two Star method is far more stable at a magnitude

threshold of 4, and the Brätt algorithm yields the lowest overall error for all magnitude types; behaving

better during the October testing than the November. This difference is attributed to an increase of light

pollution during the November test.

 Figures 6.9 and 6.10 show the overall solution behavior of the algorithms for the 1 to 5 mrad tolerance

range, which was used during simulation, with the dependence on magnitude intensity removed.

81

Figure 6.9 Overall solution failure for experimental data for tolerances 1 to 5 mrad

Figure 6.10 Overall empty solution sets for experimental data for tolerances 1 to 5 mrad

82

 From Figure 6.9 it might be concluded that the, Constrained Pyramid, Modified Pyramid, and Pyramid

with Voting are the 3 algorithms that attained the best solution success. However, it has been shown that

the Brätt algorithm did not obtain any false matches for the 1 to 5 mrad tolerance range, thus the lack of

performance is due to the increased restriction of an MRSS of 4. As it was mentioned in Chapter 5, the

behavior of this algorithm would be greatly improved if this restriction (which was imposed because of the

nature of the Pyramid algorithms) was set to 3 matches. Figure 6.11 shows the overall combined results of

the algorithms.

Figure 6.11 Solution comparison of experimental data for tolerances 1 to 5 mrad

 Figure 6.11 demonstrates a perspective of the behavior of the identification algorithms as they relate to

each other for the tolerance range of 1 to 5 mrad. The data from the October and November tests are

combined and averaged across magnitude and tolerance. These results follow very closely the results from

simulation, with exception of the Two Star algorithm which has a far greater number of empty solutions in

the experimental. This states that the solutions returned by the Two Star method were rejected during

verification. Obviously, the Two Star method has far fewer restrictions imposed on identification, and thus

has a greater tendency to return false or empty solutions as compared to the other algorithms.

83

B. Experimental Data Computation

 Comparing the timing values of Chapter 5 with the overall times of the experimental data tests prove

them to be nearly equivalent. Here the times of the actual Aptina test images are split to show average

times during each testing night. Table 6.1 contains images averaging at 13 spots per image, where Table 6.2

comprises times with an average of 11 spots per image.

Table 6.1 Average time [sec] per solution method to solve Oct data.

 Magnitude Threshold

Method 3 3.5 4

Two Star 0.1035 0.138 0.2028

Liebe 0.0204 0.0211 0.0841

Liebe Vote 0.7239 0.3479 1.2149

Brätt 8.4274 3.8601 4.3422

Pyramid 4.3698 2.654 5.0846

Comp. Pyramid 15.8612 6.2578 7.0792

Mod. Pyramid 4.6371 2.7407 5.1597

Pyramid Vote 4.383 2.6496 5.0845

Table 6.2 Average time [sec] per solution method to solve Nov data.

 Magnitude Threshold

Method 3 3.5 4

Two Star 0.0709 0.0755 0.1058

Liebe 0.012 0.0103 0.065

Liebe Vote 0.6248 0.2854 0.7757

Brätt 4.7347 2.0948 2.3664

Pyramid 3.3348 1.4014 2.5285

Comp. Pyramid 8.3781 3.0278 3.4138

Mod. Pyramid 3.5408 1.4735 2.5906

Pyramid Vote 3.3805 1.4182 2.5486

 Comparing these times to the number of empty solutions, it can be assumed that the time for deriving a

solution (not necessarily valid) for the Pyramid type methods will need to be increased when using a search

tolerance range of 1 to 5 mrad, as the output would be empty. The imager would then need to re-take an

image for processing.

84

 Furthermore, it must be noted that the times between tests are significantly different. Firstly, the times

for the Pyramid type algorithms do decrease during November due to the reduced number of spots per

image, however, not substantially. The algorithms which are comprehensive (Brätt and Comp. Pyramid)

nearly double in time for magnitude 3 star fields. This shows that large numbers of spots have a serious

impact on the solution speed of these algorithms. Additionally, much can be said concerning the time

difference between magnitudes. 3.5 and 4 magnitude fields are lower in time than magnitude 3 fields due to

the truncation of the feature lists. Thus, it can be said that by truncating the feature lists, solution speed can

be increased for algorithms which use a comprehensive star processing. This is further confirmed with

comparison to simulation results.

85

CHAPTER 7

SUMMARY

 The Hipparcos catalog was used as the main reference for stars. This database proved to be what was

needed to satisfy the requirements towards star identification. The use of Liebe’s and Mortari’s algorithms,

along with Tichy’s two star method using voting, were fundamental in the development of the star

identification algorithms constructed and tested in this analysis.

 The identification algorithms were modeled and analyzed against two main sources of error:

Centroiding distortion, and False spots. Through simulation, the algorithms were tested using Monte Carlo

randomization of the placement of these centroiding errors and locations of false spots. Using a catalog

tolerance range of 1 to 5 mrad, these algorithms solved 12,000 images which were used to model expected

experimental values.

 Test results from the simulation and the October and November tests showed 4 main algorithms that

met the demands of solution acceptance, computational performance, and robustness. These algorithms

were the Constrained Pyramid, Modified Pyramid, Pyramid with Voting, and Brätt algorithms. The Aptina

[28] MT9P031 camera from Micron was used as the basis of experimental study, using it’s parameters as

the inputs to the algorithms and simulation model.

 The results from the algorithms show that it is possible to use lower quality imaging devices in star

navigation. Table 7.1 shows a performance analysis of the algorithms and lays claim to the Brätt Three Star

with Voting and Constrained Pyramid with Voting methods as the preferred Lost in Space Algorithms.

86

Table 7.1 Performance analysis of star identification algorithms

Risk Situations
Algorithms and relative rating (1 good, 9 poor)

Two
Star

Liebe
Liebe
Vote

Brätt Pyramid
Comp.

Pyr.
Mod.
Pyr.

Pyr.
Vote

Slow Processing 1 1 3 7 5 9 5 5

False Matching in
Simulation

9 7 7 1 5 5 3 1

False Matching in
Experimental

9 5 7 1 1 3 1 1

False Solutions in
Simulation

9 7 5 1 1 1 3 1

False Solutions in
Experimental

5 7 9 3 1 3 1 1

Empty Solutions in
Simulation

1 7 5 1 9 9 9 9

Empty Solutions in
Experimental

5 3 1 1 5 5 5 5

Memory Storage
Overcapacity

3 1 9 9 7 7 7 7

High RAM Usage 3 1 7 9 5 9 7 7

Poor Verification 7 7 5 3 5 7 3 1

Total 52 46 58 36 44 58 44 38

87

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

 It was found that indeed star identification algorithms can be used in conjunction with low quality

imagers, such as the Aptina [28] MT9P031 from Micron. It was also discovered that the algorithms are

very sensitive to the magnitude reduction used to propagate images. Not all the algorithms tested passed the

criteria for acceptance. It was found that use of a catalog search tolerance was appropriate, but only within

certain boundaries, which are dependent on the type of camera used. The tolerance boundary was found to

be most beneficial at 1 to 5 mrads for most of the algorithms when dealing with the Aptina imager from

Micron. The algorithms that performed the best were: Brätt Three Star with Voting and Constrained

Pyramid with Voting. These two proved to be the best at star identification and meeting the requirements of

speed, memory usage, solution accuracy, and verification.

 In future work it is suggested to incorporate k-vectoring with the identification algorithms to improve

identification speed, as well the use of SQLite database for storage of the feature lists and star catalogs. The

Brätt algorithm would be improved if the minimum required spots for a solution were reduced from 4 to 3;

as well, if the number of features were increased to 6 the feature list size would be reduced by nearly 50%.

For the Pyramid type algorithms, it is recommended that they be constrained to only 9 features rather than

the 24 used. Additionally, there are several permutations of star processing and verification combinations

that could be performed and tested. Future work can also include the use of magnitude intensity

thresholding during identification to use only the brightest n desired spots, rather than thresholding the

feature lists and star catalogs alone, this would speed processing time and improve identification. As well if

an initial attitude estimate were given, these algorithms would obtain identifications faster and more

accurately. Thus these algorithms could be used as tracking algorithms, and in the case where the

spacecraft becomes disoriented, the algorithms can revert to their lost in space programming. Lastly, it is

recommended to test these algorithms with other cellular phone type cameras to further validate the claim

that these algorithms are acceptable for use with low quality, but high resolution, imagers.

88

REFERENCES

[1] Wikipedia, “CubeSat.” Available: http://en.wikipedia.org/wiki/CubeSat [retrieved 31 Jan 2013].

[2] Greenland, S., and Clark, C., CubeSat Platforms as an On-Orbit Technology Validation and

Verification Vehicle, Madeira, Portugal: 2010.

[3] Long, M., and Twiggs, R., “A CubeSat Derived Design for a Unique Academic Research Mission in

Earthquake Signature Detection,” Small Satellite Conference, vol. 9, 2002, pp. 1–17.

[4] Selva, D., and Krejci, D., “A Survey and Assessment of the Capabilities of Cubesats for Earth

Observation,” Acta Astronautica, vol. 74, May, 2012, pp. 50–68.

[5] Wertz, J. R., Spacecraft Attitude Determination and Control, D. Reidel Publishing Company,

Dordrecht, Netherlands, 2002.

[6] Wikipedia, “Attitude Control.” Available: http://en.wikipedia.org/wiki/Attitude_control [retrieved 31

Jan 2013].

[7] Abate, J. E., “Tracking and Scanning,” IEEE Transactions on Aerospace and Navigational

Electronics, 1963, pp. 171–181.

[8] Ryan, K., Fullmer, R., and Wassom, S., “Experimental Testing of the Accuracy of Attitude

Determination Solutions for a Spin-Stabilized Spacecraft,” AAS, 2011, pp. 1–11.

[9] Babcock, E. P., “CubeSat Attitude Determination via Kalman Filtering of Magnetometer and Solar

Cell Data.”

[10] Eisenman, A. R., and Liebe, C. C., “The New Generation of Autonomous Star Trackers,” 1997, pp.

1–12.

[11] NASA, Spacecraft Star Trackers, Houston, 1970.

[12] Ball Aerospace, CT-602 Star Tracker, 2013.

[13] Ball Aerospace, CT-601 High Accuracy Star Tracker, 1995.

[14] Lee, S., Ortiz, G. G., and Alexander, J. W., Star Tracker-Based Acquisition, Tracking, and Pointing

Technology for Deep-Space Optical Communications, 2005.

[15] TERMA, “Terma HE-5AS Star Tracker,” Terma Space. Available:

http://www.terma.com/media/101677/star_tracker_he-5as.pdf [retrieved 31 Jan 2013].

[16] Percival, J. W., Babler, B., and Bonomo, R., “The ST5000 Ultra-Low-Cost Star Tracker and Low-

Bandwidth Digital Imager,” 2000, p. 1.

[17] Ball Aerospace, High Accuracy Star Tracker (HAST), 2013.

[18] Ball Aerospace, CT-633 Stellar Attitude Sensor, 2013.

[19] French, J., and Sternberger, K., “Recalibrating the Star Sensor : From the IBEX Satellite to the

RENU Rocket,” 2011, pp. 11–15.

89

[20] Surrey, “Altair HB + Star Tracker (2-Unit Package),” Satellite Technology US LLC. Available:

http://www.sst-us.com/shop/satellite-subsystems/aocs/altair-hb--star-tracker--2-unit-package-

[retreieved 31 Jan 2013].

[21] Blue Canyon, Blue Canyon Technologies XACT datasheet, 2012.

[22] Berlin Space Technologies, Star Tracker ST-200, 2012.

[23] Birnbaum, M. M., “Spacecraft Attitude Control Using Star Field Trackers,” 1997.

[24] “2013 Best Smartphones Review and Comparisons,” Tech Media Network. Available:

 http://cell-phones.toptenreviews.com/smartphones [retrieved 31 Jan 2013].

[25] Scott, P., “Beyond Megapixels: The Quest for A Better Cellphone Camera Comparison Standard,”

CameraTechnica2. Available: www.cameratechnica.com/2012/05/11/beyond-megapixels-the-quest-

for-a-better-cellphone-camera-comparison-standard [retrieved 31 Jan 2013].

[26] Stoker, G., “Best camera phone: 6 Handsets Tested,” Techradar. Available:

http://www.techradar.com/us/news/phone-and/communications/mobile-phones/best-camera-phone-

6-handsets-tested-904250#articleContent [retrieved 31 Jan 2013].

[27] Dolcourt, J., “Best Camera Phones,” CNET. Available: http://reviews.cnet.com/best-camera-phones/.

[retrieved 31 Jan 2013].

[28] Micron Technologies, 5Mp 1/2.5-inch CMOS Digital Image Sensor Data Sheet, 2006.

[29] Thurmond, R., “A History of Star Catalogues,” 2003, pp. 1–55.

[30] CDS, “Henry Draper Catalogue and Extension 1.” Available: http://cdsarc.u-strasbg.fr/viz-

bin/Cat?III/135A [retrieved 31 Jan 2013].

[31] NASA, “Positions and Proper Motions Catalog.” Available:

http://heasarc.gsfc.nasa.gov/W3Browse/star-catalog/ppm.html [retrieved 31 Jan 2013].

[32] ESA, “Hipparcos Main Catalog.” Available:

http://heasarc.gsfc.nasa.gov/W3Browse/all/hipparcos.html [retrieved 31 Jan 2013].

[33] Wikipedia, “Star catalogue.” Available: http://en.wikipedia.org/wiki/Star_catalogue#HIP [retrieved

31 Jan 2013].

[34] Roser, S., and Bastian, U., “PPM Star Catalogue,” 1991.

[35] ESA, “Hipparcos Main Catalog,” HEASARC Archive. Available:

http://heasarc.gsfc.nasa.gov/W3Browse/all/hipparcos.html [retrieved 31 Jan 2013].

[36] Na, M., and Jia, P., “A Survey of All-sky Autonomous Star Identification Algorithms,” First

International Symposium on Systems and Control in Aerospace and Astronautics, Dept. of

Computers, Science, and Technology, Beijing, 2006, pp. 896–901.

[37] Kosik, J. C., "Star Pattern Identification: Application to the Precise Attitude Determination of the

Auroral Spacecraft," Journal of Guidance, Control, and Dynamics, Toulouse, Vol. 14, No. 2, 1991,

pp. 230-235.

[38] Groth, E. J., “A Pattern-Matching Algorithm for Two-Dimensional Coordinate Lists,” The

Astronomical Journal, vol. 91, 1986, pp. 1244–1248.

90

[39] Spratling, B. B., and Mortari, D., “A Survey on Star Identification Algorithms,” Algorithms, vol. 2,

Jan. 2009, pp. 93–107.

[40] Anderson, D. S., “Autonomous Star Sensing and Pattern Recognition for Spacecraft Attitude

Determination,” M.S. Thesis, Dept. of Engineering, University of Texas A&M, Texes, 1991.

[41] Renken, H., and Rath, H. J., " Three-Axis Attitude Determination by Image-Processed Star

Constellation Matching." Available: http://renken.de/dglr_1997_matching.pdf [retrieved 31 Jan

2013].

[42] Liebe, C. C., Star Trackers for attitude Determination, Denmark: 1995.

[43] Baldini, D., Barni, M., Foggi, A., Bernelli, G., and Mecocci, A., “A New Star Constellation

Matching Algorithm for Satellite Attitude Determination,” ESA, vol. 17, 1993, pp. 185–198.

[44] Scholl, M. S., “Six-feature star-pattern identification algorithm,” Applied Optics, vol. 33, 1994, pp.

4459–4464.

[45] Ketchum, E. A., and Tolsen, R. H., “Onboard Star Identification without A Priori Attitude

Information,” Journal of Guidance, Control, and Dynamics, vol. 18, 1995, pp. 242–246.

[46] Van Bezooijen, R. W. H., “Autonomous Star Referenced Attitude Determination,” Proceedings of

the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO: 1989.

[47] Mortari, D., Samaan, M. A., Bruccoleri, C., and Junkins, J. L., “The Pyramid Star Identification

Technique,” 2004, pp. 1–39.

[48] Mortari, D., and Neta, B., “k-Vector Range Searching Techniques,” AAS 00-128.

[49] Brady, T., Tillier, C., Brown, R., Jimenez, A., and Kourepenis, A., “The Inertial Stellar Compass: A

New Direction in Spacecraft Attitude Determination.,” 16th Annual USU Conference on Small

Satellites, USU: 2002.

[50] Samaan, M. A., Mortari, D., and Junkins, J. L., “Recursive Mode Star Identification Algorithms,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 41, 2005, pp. 1246–1254.

[51] au Rousseau, G. L., Bostel, J., and Mazari, B., “Star Recognition Algorithm for APS Star Tracker,”

IEEE A&E Systems Magazine, 2005, pp. 27–31.

[52] Zhang, G., Wei, X., and Jiang, J., “Full-sky autonomous star identification based on radial and cyclic

features of star pattern,” Image and Vision Computing, vol. 26, Jul. 2008, pp. 891–897.

[53] Kolomenkin, M., Pollak, S., Shimshoni, I., and Lindenbaum, M., “Geometric Voting Algorithm for

Star Trackers,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, 2008, pp. 441–

456.

[54] Tichy, V., Fullmer, R., and Fowler, D., “Preliminary tests of commercial imagers for nano-satellite

attitude determination,” 2011, pp. 1–9.

[55] European Space Agency “Access the Catalogue Data Tools for interrogating the Catalogues

Alternative access to the Hipparcos and Tycho Catalogues.” Available: http://www.rssd.esa.int/index

 .php?project=HIPPARCOS&page=Research_tools [retrieved 31 Jan 2013].

[56] Fowler, D. M., “Error Modeling and Analysis of Cellular Phone Imagers used as Star Cameras,”

Utah State University, 2013.

91

[57] Liebe, C. C., and Joergensen, J. L., “Algorithms Onboard the Oersted Microsatellite Stellar

Compass,” Proc. SPIE, vol. 2810, 1996, pp. 239–251.

[58] Liebe, C. C., “Algorithm for Rapid Searching Among Star-Catalog Entries,” NASA’s Jet Propulsion

Laboratory - Tech Briefs. Available: http://www.techbriefs.com/component/content/article/2913

[retrieved 31 Jan 2013].

[59] Samaan, M. A., Mortari, D., and Junkins, J. L., “Nondimensional Star Identification for Uncalibrated

Star Cameras,” The Journal of the Astronautical Sciences, vol. 54, 2006, pp. 95–111.

[60] “Droid X2 by Motorola,” Motorola. Available: http://www.motorola.com [retrieved 31 Jan 2013].

[61] Space Dynamics Laboratory, Compact ,Light-Weight, & Low Power Star Imaging for Nano- & Pico-

Satellites, 2010.

92

APPENDICES

93

APPENDIX A

CODING

 This Appendix details the programs used for analysis during simulation and the star identification

algorithm codes themselves. First, it is important to mention that the Hipparcos star catalog used in the

analysis was downloaded from ESA [55] in its original format as a text document. This text document was

converted to a MATLAB structured variable for ease of use in programming and extraction of information.

The feature lists were constructed into *.MAT files as structured arrays that contain information of the stars

used in each pattern and the features between them.

I. Simulation Codes

 This section contains the codes for the main simulation run program. It outlines the various sub-

functions used to generate star fields and spot list inputs to the identification algorithm programs. These

programs were all developed in MATLAB.

A. Simulation Main

Star Identification Simulation Module

%Simulation program to test computation speed and accuracy of star

%identification algorithms. This program creates a simulated star image

%from ECI coordinates given by the 1991 Hipparcos Catalog. The positions of

%these stars have been updated to correspond to current star positions as

%of 2012. Based on a field of view (FOV) and a visual magnitude threshold

%(Mag_Cut) given by the USER, the Catalog is broken into Featurelists, and

%based on a given initial attitude vector (ViewVec) provided by the USER,

%the simulation gives a sampled sky image for processing.

%

%After an image has been created, 6 identification methods process the

%image and attempt to identify all spots found to what their corresponding

%Hipparcos number ought to be.

%

%The simulation program will output a SimAnsM#.mat file into the Current

%Folder of MatLab which contains 6 structured arrays holding all statistics

%of each algorithm. The statistics are ordered in the following:

%

% Catalog Estimate - Centroid Error - # fake spots - Ave. RCValue - Ave.

% Quality - Ave. % of failed solutions - Ave. % false identifications -

% Profiler Statistics

%

%This Simulation Module requires the following *.m files and *.mat files to

%exist in the Current Folder:

%

94

% HIP_ALL.mat, CompDual_Feature_Extract.m, Triad_Feature_Extrac.m,

% CompTriad_Feature_Extract.m, Pyramid_Feature_Extract.m, View_to_Quat.m,

% FOV_star_generator.m, Camera_Ref_Frame.m, getTwoStar_ID.m,

% getThreeStar_ID.m, getThreeStarVote_ID.m, getCompThreeStar_ID.m,

% getPyramid_ID.m, getCompPyramid_ID.m, Voting_Algorithm.m, IDAccuracy.m,

% rotateVector.m

%

%Created by: Steven Bratt

%

%User Inputs:

%

% Mag_Cut: The visual magnitude threshold to truncate the Hipparcos Catalog

% FOV: The full field of view of the desired simulated camera image

% (circular camera view)

% ViewVec: Initial attitude (given in Deg) based on right ascension and

% declination

% rot: Number of degrees to rotate image

% IA: (Optional) Will truncate the Featurelists to 1 FOV of an

% initial attitude

% ecen: Centroiding error constraint (rad). Determines amount of

% physical error to input in creating the image. For an Aptina

% camera, 1 mrad = 3.438 arcmins, or 3.3E-4 rad per pixel

% ecat: Catalog estimate (rad). Determines tolerance on searching the

% Catalog and Featurelists for identification.

% Nfake: Number of false spots, or false stars, to include in the image.

% Allocation of these spots will be randomized.

% MRSS: The minimum required number of stars for a desired solution.

% n_iter: The number of iterations to make per run. A run will be 1 ecen,

% 1 ecat, and 1 Nfake. (i.e. If ecen = [1:2]*(3.3*10.^[-4,-3],

% ecat = 15*10^-3, Nfake = 0, and n_iter = 2, the simulation will

% run 2 times per ecen, and a total of 6 runs.

%

%Input Example:

%

% Mag_Cut = 4; %Star brightness value cutoff

% FOV = 50; %Radius of FOV [DEG]

% ViewVec = [187 54]; %Initial Attitude Vector [Deg] (Big Dipper)

% rot = 90; %Rotational image angle [Deg]

% IA = [180 57]; %Estimated Initial Attitude Vector

%

% ecen = [1]*(3.3*10.^[-4]); %Error boundary in Centroid position [Rad]

% (1 pixel error)

% ecat = [15]*10.^[-3]; %Error boundary in Catalog search [Rad]

% Nfake = 2; %Number of False Spots to place in Camera Frame

% MRSS = 4; %Minimum required stars for a solution

%

% n_iter = 10; %Number of iterations to run for Probability of Error

Initialize

close all; clear all; clc;

profile off

USER INPUTS

Mag_Cut = 3.5; %Star brightness value cutoff

95

FOV = 50; %Radius of FOV [DEG]

ViewVec = [187 54]; %Initial Attitude Vector [Deg] (Big Dipper)

rot = 90; %Rotational image angle [Deg]

IA = []; %Estimated Initial Attitude Vector

ecen = [1:3]*(3.3*10.^[-4]); %Error boundary in Centroid position [Rad]

ecat = [1:5]*10.^[-3]; %Error boundary in Catalog search [Rad]

Nfake = [0:3]; %Number of False Spots to place in Camera Frame

MRSS = 4; %Minimum required stars for a solution

n_iter = 1; %Number of iterations to run for Probability of Error

INPUT CHECK

% Date Folder to save output

dirDate = datestr(now(),'mmmdd-yy-HH_MM');

if ~exist(dirDate,'dir')

 mkdir(dirDate);

end

%Initial Parameters

n1 = length(ecat);

n2 = length(ecen);

n3 = length(Nfake);

%Randomized Line of Sight of camera (If no View Vector is inputted)

if isempty(ViewVec) && isempty(IA)

 NumViews = 100;

 RA = 0+(360-0).*rand(NumViews,1);

 Dec = -90+(180).*rand(NumViews,1);

 ViewVec = [RA Dec];

 rot = 0+(360).*rand(NumViews,1);

 n4 = NumViews;

else

 n4 = 1;

end

%Parameters for waitbar

I = 0; %Counter for waitbar

II = n1*n2*n3*n_iter*n4; %Waitbar limit

DATA PROCESSING

GET Catalogs and Feature Lists

if exist(['HIP_',num2str(Mag_Cut),'.mat'],'file') == 2

 catalog = load(['HIP_',num2str(Mag_Cut),'.mat']);

elseif Mag_Cut <= 6 && Mag_Cut >= 1

 fprintf('\nCreating new tables for mag. %g stars\n',Mag_Cut)

96

 mc = ceil(Mag_Cut);

 cata = load(['HIP_',num2str(mc),'.mat']);

 ii = [cata.cat.Mag] <= 3.5;

 cat = cata.cat(ii);

 save(['HIP_',num2str(Mag_Cut),'.mat'],'cat')

 catalog = load(['HIP_',num2str(Mag_Cut),'.mat']);

else

 error('Mag_Cut outside permisible range.')

end

%Develop/Create Feature List Database

CompDual_Feature_Extract(Mag_Cut,FOV)

Triad_Feature_Extract(Mag_Cut,FOV)

CompTriad_Feature_Extract(Mag_Cut,FOV)

Pyramid_Feature_Extract(Mag_Cut,FOV)

%Load in Feature Lists

featurelist1 = load(['CompDuelStar_M',num2str(Mag_Cut),'_F',num2str(FOV),'.mat']);

featurelist2 = load(['TriadStar_M',num2str(Mag_Cut),'_F',num2str(FOV),'.mat']);

featurelist3 = load(['CompTriadStar_M',num2str(Mag_Cut),'_F',num2str(FOV),'.mat']);

featurelist4.feat = featurelist3.feat;

featurelist5 = load(['PyramidStar_M',num2str(Mag_Cut),'_F',num2str(FOV),'.mat']);

featurelist6.feat = featurelist5.feat;

featurelist7.feat = featurelist5.feat;

featurelist8.feat = featurelist5.feat;

If Given An Initial Attitude ---

if ~isempty(IA)

 k = 0;

 IA = [cosd(IA(1))*cosd(IA(2))... X [rad]

 sind(IA(1))*cosd(IA(2))... Y [rad]

 sind(IA(2))]; %Z [rad]

 fov = FOV*pi/180;

 [~,n] = size(catalog.cat);

 for i = 1:n

 angle = acos(dot(catalog.cat(i).XYZ,IA));

 if angle <= fov

 k = k+1;

 index(k) = catalog.cat(i).HipID;

 end

 end

 %Two Star w/ Voting

 featurelist1.feat = featurelist1.feat(ismember([featurelist1.feat.HipID1],index));

 featurelist1.feat = featurelist1.feat(ismember([featurelist1.feat.HipID2],index));

97

 %Three Star

 featurelist2.feat = featurelist2.feat(ismember([featurelist2.feat.HipID1],index));

 featurelist2.feat = featurelist2.feat(ismember([featurelist2.feat.HipID2],index));

 featurelist2.feat = featurelist2.feat(ismember([featurelist2.feat.HipID3],index));

 %Three Star w/ Voting

 featurelist3.feat = featurelist3.feat(ismember([featurelist3.feat.HipID1],index));

 featurelist3.feat = featurelist3.feat(ismember([featurelist3.feat.HipID2],index));

 featurelist3.feat = featurelist3.feat(ismember([featurelist3.feat.HipID3],index));

 featurelist4.feat = featurelist3.feat;

 %Pyramid

 featurelist5.feat = featurelist5.feat(ismember([featurelist5.feat.HipID1],index));

 featurelist5.feat = featurelist5.feat(ismember([featurelist5.feat.HipID2],index));

 featurelist5.feat = featurelist5.feat(ismember([featurelist5.feat.HipID3],index));

 featurelist6.feat = featurelist5.feat;

 featurelist7.feat = featurelist5.feat;

 featurelist8.feat = featurelist5.feat;

end

%--

fprintf('Tables created\n\n')

Star Selection Based on FOV and Attitude (ViewVec)

fprintf('** Probability of Error in Progress...\n')

handle = waitbar(0,'Testing in progress...','Name','Simulation Testing');

ProfStats(n4,1) = struct('data',[],'View',[],'Method',[]);

for m = 1:n4

 profile on

 [q,R] = View_to_Quat(ViewVec(m,:),rot(m)); %Finds quaternion and rotation matrix

 [Sky] = FOV_star_generator(ViewVec,Mag_Cut,FOV); %Selects stars w/in view

ID Methods, Probability of Error, and Statistics

 index = 0;

 Prob1 = zeros(n1*n2*n3,7);

 Prob2 = Prob1;

 Prob3 = Prob1;

 Prob4 = Prob1;

 Prob5 = Prob1;

 Prob6 = Prob1;

 Prob7 = Prob1;

 Prob8 = Prob1;

 for i = 1:n1 %Run to last entry of ecat

 for j = 1:n2 %Run to last entry of ecen

 for k = 1:n3 %Run to last entry of Nfake

98

 ProbE1 = zeros(n_iter,5);

 ProbE2 = ProbE1;

 ProbE3 = ProbE1;

 ProbE4 = ProbE1;

 ProbE5 = ProbE1;

 ProbE6 = ProbE1;

 ProbE7 = ProbE1;

 ProbE8 = ProbE1;

 for iterate = 1:n_iter %Run for # of desired iterations

 %Body Frame

 [spotlist] = Camera_Ref_Frame(Sky,R,Nfake(k),ecen(j));

 %Two Star Method with Voting

 [starID,~] = getTwoStar_ID(catalog,featurelist1,spotlist,ecat(i));

 [stats,~] = IDAccuracy(starID,Sky,MRSS);

 ProbE1(iterate,:) = [stats.RCvalue stats.quality stats.NoSol stats.PercFalse stats.EmptySol];

 %Liebe Three Star Method

 [starID,~] = getThreeStar_ID(catalog,featurelist2,spotlist,ecat(i));

 [stats,~] = IDAccuracy(starID,Sky,MRSS);

 ProbE2(iterate,:) = [stats.RCvalue stats.quality stats.NoSol stats.PercFalse stats.EmptySol];

 %Liebe Three Star Method with Voting

 [starID,~] = getThreeStarVote_ID(catalog,featurelist3,spotlist,ecat(i));

 [stats,~] = IDAccuracy(starID,Sky,MRSS);

 ProbE3(iterate,:) = [stats.RCvalue stats.quality stats.NoSol stats.PercFalse stats.EmptySol];

 %Comprehensive Three Star Method with Voting (Bratt's Method)

 [starID,~] = getCompThreeStar_ID(catalog,featurelist4,spotlist,ecat(i));

 [stats,~] = IDAccuracy(starID,Sky,MRSS);

 ProbE4(iterate,:) = [stats.RCvalue stats.quality stats.NoSol stats.PercFalse stats.EmptySol];

 %Mortari's Pyramid Method

 [starID,~] = getPyramid_ID(catalog,featurelist5,spotlist,ecat(i));

 [stats,~] = IDAccuracy(starID,Sky,MRSS);

 ProbE5(iterate,:) = [stats.RCvalue stats.quality stats.NoSol stats.PercFalse stats.EmptySol];

 %Comprehensive Pyramid Method

 [starID,~] = getCompPyramid_ID(catalog,featurelist6,spotlist,ecat(i));

 [stats,~] = IDAccuracy(starID,Sky,MRSS);

 ProbE6(iterate,:) = [stats.RCvalue stats.quality stats.NoSol stats.PercFalse stats.EmptySol];

 %Comp. Mod. Pyramid Method

 [starID,~] = getPyramid_ID_mod(catalog,featurelist7,spotlist,ecat(i));

 [stats,~] = IDAccuracy(starID,Sky,MRSS);

 ProbE7(iterate,:) = [stats.RCvalue stats.quality stats.NoSol stats.PercFalse stats.EmptySol];

 %Pyramid with Voting

 [starID,~] = getPyramidVote_ID(catalog,featurelist8,spotlist,ecat(i));

 [stats,~] = IDAccuracy(starID,Sky,MRSS);

 ProbE8(iterate,:) = [stats.RCvalue stats.quality stats.NoSol stats.PercFalse stats.EmptySol];

 %Wait bar counter and window

 I = I + 1;

99

 waitbar(I/II,handle,sprintf('Testing in progress...%2.2f %%',I/II*100))

 end

 %Update Probability of Error for Nfake and ecen

 index = index + 1;

 ProfStats(m).Method(1).Prob(index,:) = [ecat(i) ecen(j) Nfake(k) sum(ProbE1,1)/n_iter];

 ProfStats(m).Method(2).Prob(index,:) = [ecat(i) ecen(j) Nfake(k) sum(ProbE2,1)/n_iter];

 ProfStats(m).Method(3).Prob(index,:) = [ecat(i) ecen(j) Nfake(k) sum(ProbE3,1)/n_iter];

 ProfStats(m).Method(4).Prob(index,:) = [ecat(i) ecen(j) Nfake(k) sum(ProbE4,1)/n_iter];

 ProfStats(m).Method(5).Prob(index,:) = [ecat(i) ecen(j) Nfake(k) sum(ProbE5,1)/n_iter];

 ProfStats(m).Method(6).Prob(index,:) = [ecat(i) ecen(j) Nfake(k) sum(ProbE6,1)/n_iter];

 ProfStats(m).Method(7).Prob(index,:) = [ecat(i) ecen(j) Nfake(k) sum(ProbE7,1)/n_iter];

 ProfStats(m).Method(8).Prob(index,:) = [ecat(i) ecen(j) Nfake(k) sum(ProbE8,1)/n_iter];

 ProfStats(m).data = profile('info');

 ProfStats(m).View = ViewVec(m,:);

 end

 end

 end

 profile off

end

save([dirDate filesep 'SimAnsM',num2str(Mag_Cut),'run.mat'],'ProfStats')

delete(handle)

Post Processing

close all;clc

[SimTime,Table] = SimPostProcess(3.5,ecat,ecen,Nfake);

End of Program.

B. Feature List Creation

1. Two Star Features List

function [] = CompDual_Feature_Extract(magcut,FOV)

% S.Bratt Function to create a catalog of dual star features based on an

% inputed star magnitude cut-off. Creates a list of dot-product angles

% between two stars. The list is constructed of the HIP numbers of the two

% stars and the angle between them in radians.

Hiparcos Catalog Parameters

if exist(['CompDuelStar_M',num2str(magcut),'_F',num2str(FOV),'.mat'],'file') == 2

else

 catalog = load(['HIP_',num2str(magcut),'.mat']);

 N = size(catalog.cat,2);

 if FOV > 10

100

 if magcut > 5

 fovr = (FOV/4)*pi/180;

 elseif magcut <= 5 && magcut >= 4

 fovr = (FOV/3)*pi/180;

 elseif magcut < 4 && magcut > 3

 fovr = (FOV/2)*pi/180;

 elseif magcut <= 3

 fovr = (FOV)*pi/180;

 end

 else

 fovr = FOV*pi/180;

 end

Feature Extraction

 %Initial parameters

 feat(10000000,1) = struct('HipID1',[],'HipID2',[],'theta1',[]);

 L = 0;

 handle = waitbar(0,'Initializing...');

 %Feature creation

 for j = 1:N-1

 Hip1 = catalog.cat(j).HipID; %Cooresponding HIP# to vector A

 A = catalog.cat(j).XYZ; %Desired vector for comparison

 for i = j+1:N

 %Retrieve 2nd vector

 B = catalog.cat(i).XYZ;

 %Find angle between desired vector and 2nd vector

 theta1 = acos(dot(A,B)); %[rad]

 if theta1 <= fovr

 Hip2 = catalog.cat(i).HipID;

 %Update counter

 L = L + 1;

 %Incremented Feature Table

 feat(L).HipID1 = Hip1;

 feat(L).HipID2 = Hip2;

 feat(L).theta1 = theta1;

 end

 end

 waitbar(j/(N-1),handle,sprintf('Building Two Star Feature Table...%2.1f %%',j/(N-1)*100))

 end

 feat = feat(1:L);

101

 delete(handle)

 %Exporting Feature Table to *.MAT file

 save(['CompDuelStar_M',num2str(magcut),'_F',num2str(FOV),'.mat'],'feat','-v6')

end

End of Program.

End

2. Liebe Feature List

function [] = Triad_Feature_Extract(magcut,FOV)

% S.Bratt Function to create a catalog of triad feature based on an

% inputed star magnitude cut-off. Creates a list dot-product angles between

% a star and the next two CLOSEST stars. Also finds the interior

% dot-product angle between those three stars.

Hiparcos Catalog Parameters

if exist(['TriadStar_M',num2str(magcut),'_F',num2str(FOV),'.mat'],'file') == 2

else

 catalog = load(['HIP_',num2str(magcut),'.mat']);

 N = size(catalog.cat,2);

Feature Extraction

 %Initial parameters

 handle = waitbar(0,'Initializing...');

 feat(10000000,1) = struct('HipID1',[],'HipID2',[],'HipID3',[],'theta1',[],'theta2',[],'phi',[]);

 %Feature creation

 for j = 1:N

 A = catalog.cat(j).XYZ; %Desired vector for comparison

 B = 0; %Initialize 2nd vector

 C = 0; %Initialize 3rd vector

 Hip1 = catalog.cat(j).HipID; %Cooresponding HIP# to vector A

 Hip2 = 0; %Initialize 2nd HIP#

 Hip3 = 0; %Initialize 3rd HIP#

 theta1 = 360; %Initialize 1st angle

 theta2 = 360; %Initialize 2nd angle

 for i = 1:N

 %Retrieve 2nd vector

 NewXYZ = catalog.cat(i).XYZ;

 if NewXYZ ~= A;

 %Find angle between desired vector and 2nd vector

 theta = acos(dot(A,NewXYZ));

102

 %Compare and update angles

 if theta1 < theta && theta < theta2

 theta2 = theta;

 Hip3 = catalog.cat(i).HipID;

 C = NewXYZ;

 elseif theta < theta1

 theta2 = theta1;

 theta1 = theta;

 Hip3 = Hip2;

 Hip2 = catalog.cat(i).HipID;

 C = B;

 B = NewXYZ;

 end

 end

 end

 %Interior vectors and magnitudes

 Vec1 = B-A;

 Vec2 = C-A;

 v1 = sqrt(Vec1(1)^2+Vec1(2)^2+Vec1(3)^2);

 v2 = sqrt(Vec2(1)^2+Vec2(2)^2+Vec2(3)^2);

 %Find interior angle

 phi = acos(dot(Vec1,Vec2)/(v1*v2));

 if theta1 > theta2

 ang1 = theta2;

 ang2 = theta1;

 Hiparc2 = Hip3;

 Hiparc3 = Hip2;

 else

 ang1 = theta1;

 ang2 = theta2;

 Hiparc2 = Hip2;

 Hiparc3 = Hip3;

 end

 %Incremented Feature Table

 feat(j).HipID1 = Hip1;

 feat(j).HipID2 = Hiparc2;

 feat(j).HipID3 = Hiparc3;

 feat(j).theta1 = ang1;

 feat(j).theta2 = ang2;

 feat(j).phi = phi;

 waitbar(j/N,handle,sprintf('Building Three Star Feature Table...%2.1f %%',j/N*100))

 end

 feat = feat(1:j);

 delete(handle)

103

 %Exporting Feature Table to Data file

 save(['TriadStar_M',num2str(magcut),'_F',num2str(FOV),'.mat'],'feat','-v6')

end

End of Program.

End

3. Liebe with Voting and Brätt Feature List

function [] = CompTriad_Feature_Extract(magcut,FOV)

% Comprehensive Tried Feature Extraction based on a magnitude threshold and

% radius of FOV (field of view).

Hiparcos Catalog Parameters

if exist(['CompTriadStar_M',num2str(magcut),'_F',num2str(FOV),'.mat'],'file') == 2

else

 catalog = load(['HIP_',num2str(magcut),'.mat']);

 N = size(catalog.cat,2);

 if FOV > 10

 if magcut > 5

 fovr = (FOV/4)*pi/180;

 elseif magcut <= 5 && magcut >= 4

 fovr = (FOV/3)*pi/180;

 elseif magcut < 4 && magcut > 3

 fovr = (FOV/2)*pi/180;

 elseif magcut <= 3

 fovr = (FOV)*pi/180;

 end

 else

 fovr = FOV*pi/180;

 end

Feature Extraction

 %Initial Parameters

 feat(10000000,1) = struct('HipID1',[],'HipID2',[],'HipID3',[],...

 'theta1',[],'theta2',[],'phi',[]);

 handle = waitbar(0,'Initializing...');

 L = 0;

 for i = 1:N

 Hip1 = catalog.cat(i).HipID;

 A = catalog.cat(i).XYZ;

104

 for j = 1:N

 if j ~= i

 Hip2 = catalog.cat(j).HipID;

 B = catalog.cat(j).XYZ;

 theta1 = acos(dot(A,B));

 if theta1 <= fovr

 for k = 1:N

 if k ~= i && k > j

 Hip3 = catalog.cat(k).HipID;

 C = catalog.cat(k).XYZ;

 theta2 = acos(dot(A,C));

 if theta2 <= fovr

 Vec1 = B-A;

 Vec2 = C-A;

 v1 = sqrt(Vec1(1)^2+Vec1(2)^2+Vec1(3)^2);

 v2 = sqrt(Vec2(1)^2+Vec2(2)^2+Vec2(3)^2);

 phi = acos(dot(Vec1,Vec2)/(v1*v2));

 if theta1 > theta2

 ang1 = theta2;

 ang2 = theta1;

 Hiparc2 = Hip3;

 Hiparc3 = Hip2;

 else

 ang1 = theta1;

 ang2 = theta2;

 Hiparc2 = Hip2;

 Hiparc3 = Hip3;

 end

 %Incremented Feature Table

 L = L + 1;

 feat(L).HipID1 = Hip1;

 feat(L).HipID2 = Hiparc2;

 feat(L).HipID3 = Hiparc3;

 feat(L).theta1 = ang1;

 feat(L).theta2 = ang2;

 feat(L).phi = phi;

 end

 end

 end

 end

 end

 end

 waitbar(i/N,handle,sprintf('Building Comp. Three Star Table...%2.1f %%',i/N*100))

105

 end

 feat = feat(1:L);

 delete(handle)

 %Exporting Feature Table to Data file

 save(['CompTriadStar_M',num2str(magcut),'_F',num2str(FOV),'.mat'],'feat','-v6')

end

End of Program.

end

4. All Pyramid Feature Lists

function [] = Pyramid_Feature_Extract(magcut,FOV)

if exist(['PyramidStar_M',num2str(magcut),'_F',num2str(FOV),'.mat'],'file') == 2

else

 catalog = load(['HIP_',num2str(magcut),'.mat']);

 N = size(catalog.cat,2);

 if FOV > 10

 if magcut > 5

 fovr = (FOV/4)*pi/180;

 elseif magcut <= 5 && magcut >= 4

 fovr = (FOV/3)*pi/180;

 elseif magcut < 4 && magcut > 3

 fovr = (FOV/2)*pi/180;

 elseif magcut <= 3

 fovr = (FOV)*pi/180;

 end

 else

 fovr = FOV*pi/180;

 end

Feature Extraction

 feat(1000000,1) = struct('HipID1',[],'HipID2',[],'HipID3',[],...

 'theta1',[],'theta2',[],'theta3',[],...

 'phi1',[],'phi2',[],'phi3',[]);

 handle = waitbar(0,'Initializing...');

 L = 0;

 for i = 1:N-2

 Hip1 = catalog.cat(i).HipID;

 A = catalog.cat(i).XYZ;

106

 for j = i+1:N-1

 Hip2 = catalog.cat(j).HipID;

 B = catalog.cat(j).XYZ;

 theta1 = acos(dot(A,B));

 if theta1 <= fovr

 for k = j+1:N

 Hip3 = catalog.cat(k).HipID;

 C = catalog.cat(k).XYZ;

 theta2 = acos(dot(A,C));

 theta3 = acos(dot(B,C));

 if theta2 <= fovr

 V12 = B-A;

 V13 = C-A;

 V23 = C-B;

 v12 = sqrt(V12(1)^2+V12(2)^2+V12(3)^2);

 v13 = sqrt(V13(1)^2+V13(2)^2+V13(3)^2);

 v23 = sqrt(V23(1)^2+V23(2)^2+V23(3)^2);

 phi1 = acos(dot(V12,V13)/(v12*v13));

 phi2 = acos(dot(V12,V23)/(v12*v23));

 phi3 = acos(dot(V13,V23)/(v13*v23));

 if theta1 < theta2 && theta1 < theta3

 if theta2 < theta3

 H1 = Hip1; H2 = Hip2; H3 = Hip3;

 T1 = theta1; T2 = theta2; T3 = theta3;

 P1 = phi1; P2 = phi2; P3 = phi3;

 else

 H1 = Hip2; H2 = Hip1; H3 = Hip3;

 T1 = theta1; T2 = theta3; T3 = theta2;

 P1 = phi1; P2 = phi3; P3 = phi2;

 end

 elseif theta2 < theta1 && theta2 < theta3

 if theta1 < theta3

 H1 = Hip1; H2 = Hip3; H3 = Hip2;

 T1 = theta2; T2 = theta1; T3 = theta3;

 P1 = phi2; P2 = phi1; P3 = phi3;

 else

 H1 = Hip3; H2 = Hip1; H3 = Hip2;

 T1 = theta2; T2 = theta3; T3 = theta1;

 P1 = phi2; P2 = phi3; P3 = phi1;

 end

 elseif theta3 < theta1 && theta3 < theta2

 if theta1 < theta2

 H1 = Hip2; H2 = Hip3; H3 = Hip1;

 T1 = theta3; T2 = theta1; T3 = theta2;

 P1 = phi3; P2 = phi1; P3 = phi2;

 else

107

 H1 = Hip3; H2 = Hip2; H3 = Hip1;

 T1 = theta3; T2 = theta2; T3 = theta1;

 P1 = phi3; P2 = phi2; P3 = phi1;

 end

 end

 L = L + 1;

 feat(L).HipID1 = H1;

 feat(L).HipID2 = H2;

 feat(L).HipID3 = H3;

 feat(L).theta1 = T1;

 feat(L).theta2 = T2;

 feat(L).theta3 = T3;

 feat(L).phi1 = P1;

 feat(L).phi2 = P2;

 feat(L).phi3 = P3;

 end

 end

 end

 end

 waitbar(i/N,handle,sprintf('Building Comp. Pyramid Star Table...%2.1f %%',i/N*100))

 end

 feat = feat(1:L);

 delete(handle)

 %Exporting Feature Table to Data file

 save(['PyramidStar_M',num2str(magcut),'_F',num2str(FOV),'.mat'],'feat','-v6')

end

End of Program.

end

C. Body to ECI Rotation

function [q,R] = View_to_Quat_mod(ViewVec,rot)

%Function for obtaining a rotation matrix and rotation quaternion based on

%a given camera viewing vector. The Z-axis is in line with the bore-sight

%of the camera. This function to be used in conjunction with Parent

%Function: StarSimProgram.m

%

%Created by: Steven Bratt

%

% Input:

% ViewVec - Vector of Right Ascension [Deg], and Declination [Deg]

% from horizon

% rot - Angle by which to rotate vectors (right hand rotation

% viewed from XY-plane) [Deg]

%

% Outputs:

108

% q - Quaternion Rotation for coordinate transformation. The

% quaternion is [q0 q1 q2 q3] with q0 being the angle of

% rotation about the quaternion axis.

%

% R - Rotation matrix from ECI to the Body Coordinate System.

% Rotation is a ZXZ rotation.

%

% Example:

%

% ViewVec = [188 54]; %[Deg]

% rot = [90]; %[Deg]

% [q,R] = View_to_Quat(ViewVec,rot);

%

Calculations

%Input Check

if length(ViewVec) ~= 2

 error('Incorrect [ViewVec] variable length. Must be length 2.')

elseif isnumeric(ViewVec) ~= 1

 error('[ViewVec] must be a rational numeric vector variable.')

elseif isnumeric(rot) ~= 1 || length(rot) ~= 1

 error('[rot] must be a rational numeric variable of length 1')

end

%Convert to XYZ

xyz = [cosd(ViewVec(1))*cosd(ViewVec(2))... X [rad]

 sind(ViewVec(1))*cosd(ViewVec(2))... Y [rad]

 sind(ViewVec(2))]; %Z [rad]

%Obtain Euler Angles

theta = atan2(xyz(1),-xyz(2));

phi = acos(xyz(3));

psi = -rot*pi/180;

%Construct Rotation Matrix

c1 = cos(theta); c2 = cos(phi); c3 = cos(psi);

s1 = sin(theta); s2 = sin(phi); s3 = sin(psi);

R = [c1*c3-c2*s1*s3 -c1*s3-c2*c3*s1 s1*s2

 c3*s1+c1*c2*s3 c1*c2*c3-s1*s3 -c1*s2

 s2*s3 c3*s2 c2];

%Construct Rotation Quaternion

q = [cos(theta/2)*cos(phi/2)*cos(psi/2)+sin(theta/2)*sin(phi/2)*sin(psi/2)

 sin(theta/2)*cos(phi/2)*cos(psi/2)-cos(theta/2)*sin(phi/2)*sin(psi/2)

 cos(theta/2)*sin(phi/2)*cos(psi/2)+sin(theta/2)*cos(phi/2)*sin(psi/2)

 cos(theta/2)*cos(phi/2)*sin(psi/2)-sin(theta/2)*sin(phi/2)*cos(psi/2)];

End of Program.

end

D. Star Field Generator

function [Sky] = FOV_star_generator(ViewVec,magcut,FOV)

109

%

% Function for generating a truncated star table based on an

% initial pointing vector, a magnitude threshold, and a desired field of

% view. Data is obtained from a modified HIPPARCOS Catalog. Use in

% conjunction with Parent Function: StarSimProgram.m

%

% Created by: Steven Bratt

%

% Input:

% ViewVec - Pointing vector in ECI [Deg]

% magcut - Magnitude threshold (Any numeric value between -2 and 13)

% FOV - Desired field of view [Deg]

%

% Output:

% Sky - Field of View (FOV) limited star table outputed as

% a structured variable

%

% Example:

% [Sky] = FOV_star_generator([184 54],4,50)

% Result:

% Sky

% HipID:

% XYZ:

%

INPUTS

User Inputs

%Boundary Error Check

if FOV < 10;

 error('Field of View (FOV) must be at least 10 deg')

end

%Boundary Error Check

if -2 > magcut || magcut > 13

 error('The Magnitude Cutoff value is beyond the bounds of the Database. Input a new Magnitude Cutoff

value between -2 and 13.')

end

CALCULATIONS

%Convert to XYZ

IA = [cosd(ViewVec(1))*cosd(ViewVec(2))... X [rad]

 sind(ViewVec(1))*cosd(ViewVec(2))... Y [rad]

 sind(ViewVec(2))]; %Z [rad]

%Magnitude Thresholding Cutoff

load(['HIP_',num2str(magcut),'.mat'],'cat');

N = size(cat,2); %Number of stars in truncated catalog

Windowing Truncation

%Initial zero matrix for looping speed

Sky(100,1) = struct('HipID',[],'XYZ',[]);

110

%Dummy counting variable

L = 0;

%Angle of allowance

ANG = (FOV/2)*(pi/180);

%Loop for duration of Catalog size

for i = 1:N

 %Calculate dot product angle from a star to IA

 theta = acos(dot(cat(i).XYZ,IA));

 %Acceptance criteria

 if theta <= ANG

 L = L + 1; %Update counter

 Sky(L).HipID = cat(i).HipID; %Hip # of stars

 Sky(L).XYZ = cat(i).XYZ; %XYZ position of stars

 end

end

%Selected stars within FOV of ViewVec

Sky = Sky(1:L);

End of Function.

End

function V = rotateVector(phi,theta,psi,V,direction)

% Function to rotate coordinate systems given a state vector and euler

% angles. (ZXZ Euler Sequence)

%

% Created by: David Fowler

%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%

% input:

% phi - (radians)

% theta - Inclination (radians)

% psi - Argument of Perigee (radians)

% V - Vector (X,Y,Z components)

% direction - If equal to 1 it transforms from local to global else

% visa-versa

% return:

% V - Rotated Vector (X,Y,Z components)

%%%

%%%%%%%%%%%%%%%%%%%%%%%%

cPhi = cos(phi); cTheta = cos(theta); cPsi = cos(psi);

sPhi = sin(phi); sTheta = sin(theta); sPsi = sin(psi);

Q_12 = [[cPhi*cPsi-sPhi*cTheta*sPsi, sPhi*cPsi+cPhi*cTheta*sPsi, sTheta*sPsi];...

 [-cPhi*sPsi-sPhi*cTheta*cPsi, -sPhi*sPsi+cPhi*cTheta*cPsi, sTheta*cPsi];...

 [sPhi*sTheta, -cPhi*sTheta, cTheta]];

if direction == 1

111

 V = Q_12' * V;

else

 V = Q_12 * V;

end

end

E. Camera and Error Distortion Program

function [spotlist] = Camera_Ref_Frame(Sky,R,Nfake,ecen)

% Function code for constructing ECI sky images and rotating them into the

% Camera Body reference frame. Receives 3D vectors and returns 3D vectors

% that have been rotated and introduces error based on Nfake and ecen.

%

% Created by: Steven Bratt

%

% Inputs:

% Sky - Output from FOV_star_generator.m function

% R - Rotation matrix

% Nfake - Number of false spots to be added to image

% ecen - Error tolerance in star/spot Centroiding [rad]

%

% Outputs:

% spotlist - Structured array containing 3D vectors of 'spots'

% obtained from 'Sky' that have been randomly shifted

%

CALCULATIONS

Data Retrieval and Initial Parameters

%Initial Parameters

N = size(Sky,1);

Rotation Transform from ECI to Camera Frame

%Initial zero matrix for looping speed

Spots = zeros(N,4);

%Rotate and index spots

for i = 1:N

 Spots(i,:)= [i (R*Sky(i).XYZ')']; %Camera Reference Frame [rad]

end

Uniform Random Centroiding Error

%Computer precision limit

if ecen == 0

 ecen = 10^-15;

end

%Input random errors into Spots vectors

for i = 1:N

112

 a = -ecen; b = ecen;

 phi = a + (b-a).*rand(1);

 the = a + (b-a).*rand(1);

 psi = a + (b-a).*rand(1);

 V = rotateVector(phi,the,psi,Spots(i,2:4)',1);

 Spots(i,:) = [Spots(i,1) V'];

end

Guassian Random False Spots

%Randomized location based on given number of false spots

if Nfake == 0

else

 %Mean Value of Spots %Standard Deviation of Spots

 mu_x = mean(Spots(:,2)); st_x = std(Spots(:,2));

 mu_y = mean(Spots(:,3)); st_y = std(Spots(:,3));

 mu_z = mean(Spots(:,4)); st_z = std(Spots(:,4));

 randspots(:,1) = mu_x+st_x*randn(Nfake,1); %Random x position

 randspots(:,2) = mu_y+st_y*randn(Nfake,1); %Random y postion

 randspots(:,3) = mu_z+st_z*randn(Nfake,1); %Random z position

 %Indexing of random spots and placement in spotlist

 randspots = [(N+1:N+Nfake)' randspots];

 Spots = [Spots;randspots];

end

OUTPUTS/RESULTS

%Initialize structured array

spotlist(N+Nfake,1) = struct('spot',[],'XYZ',[]);

%Create structured array

for i = 1:N+Nfake

 spotlist(i).spot = Spots(i,1);

 spotlist(i).XYZ = Spots(i,2:end);

end

End of Function.

end

F. ID Accuracy Check

function [stats,Matrix] = IDAccuracy(starID,Sky,MRSS)

%MRSS: minimum required stars for solution

%Show what?: A full matrix of the spots, votes, Hips, XYZ

113

% The number of false matches (ID with a neg vote)

% Whether or not there was a false ID (ID with a pos vote)

% Reliability/Confidence value and Quality of answer

n = length(Sky);

N = length(starID);

if N > n

 PAD = zeros(1,N-n);

else

 PAD = [];

end

for i = 1:n

 if isempty(Sky(i).HipID)

 Sky(i).HipID = 0;

 end

end

Skyz = [Sky.HipID PAD];

stats = struct('trueID',0,'falseID',0,'neutralID',0,'RCvalue',0,...

 'quality',0,'PercFalse',0,'NoSol',0,'EmptySol',0);

if sum([starID.votes]>0) == 0

 stats.trueID = 0;

 stats.falseID = 0;

 stats.neutralID = 0;

 stats.PercFalse = 0;

 stats.NoSol = 0;

 stats.EmptySol = 100;

elseif sum([starID.HipID]) ~= 0

 for i = 1:N

 %Compare HIP ID from starID to what is in the SKY

 if isequal(starID(i).HipID , Skyz(i)) == 1

 stats.trueID = stats.trueID + 1;

 else

 if starID(i).votes > 0

 stats.falseID = stats.falseID + 1;

 elseif starID(i).votes <= 0

 stats.neutralID = stats.neutralID + 1;

 end

 end

 if i == n

 if stats.trueID < MRSS || sum([stats.falseID]) > 0

114

 stats.NoSol = 100;

 else

 stats.NoSol = 0;

 end

 end

 end

 divider = sum([starID.HipID]~=0);

 stats.PercFalse = stats.falseID/divider*100;

else

 stats.trueID = 0;

 stats.falseID = 0;

 stats.neutralID = 0;

 stats.PercFalse = 0;

 stats.NoSol = 0;

 stats.EmptySol = 100;

end

Reliability/Confidence and Quality of votes

%sum of votes / max abs vote / n true stars = Reliability/Confidence

maxabs = max(abs([starID(1:n).votes]));

if maxabs == 0

 stats.RCvalue = -1;

else

 stats.RCvalue = sum([starID(1:n).votes])/(maxabs*n);

end

stats.quality = sum([starID.votes]);

Matrix.text = ['Votes ','Spot# ','HipID ','TrueH ','X ','Y ','Z '];

data = [[starID.votes]' [starID.spot]' [starID.HipID]' Skyz'...

 vertcat(starID.XYZ)];

Matrix.data = data;

End of Program.

end

G. Post Processing and Probability of Error

function [SimTime,Table] = SimPostProcess(Mag_Cut,ecat,ecen,Nfake)

%SimTime [total # days]

%Table.Time [average time in sec]

load(['SimAnsM',num2str(Mag_Cut),'run.mat']);

L = length(ProfStats);

x = ecat;

n1 = length(ecat);

115

n2 = length(ecen);

n3 = length(Nfake);

M = 0;

figure

for i = 1:L

 H = sum([ProfStats(i).data.FunctionTable.TotalTime]);

 M = H+M;

 X = ProfStats(i).View(1);

 Y = ProfStats(i).View(2);

 plot(X,Y,'ko','MarkerSize',40)

 hold on

 plot(X,Y,'k')

end

axis([0 360 -90 90])

set(gca,'XTick',0:30:360)

set(gca,'YTick',-90:15:90)

title(['Simulation Camera View Points in Sky - Mag. ',num2str(Mag_Cut)])

xlabel('Right Ascension, [Deg]')

ylabel('Declination, [Deg]')

fprintf('** Probability of Error Complete **\n')

SimTime = M/3600/24;

stop = 0;

for i = 1:8

 k = 0;

 while stop == 0

 k = k + 1;

 if k > L

 break

 end

 t1 = ProfStats(k).Method(i).Prob(:,6);

 t2 = ProfStats(k).Method(i).Prob(:,7);

 s1 = sum(t1);

 s2 = sum(t2);

 if s2 > 0 && s1 == 0 %|| s2 == 0 && s1 > 0 %1st half: True when error is present, 2nd half: True

when fewer than MRSS are ID'd

 disp(['Method ' num2str(i) ' Verification Failed'])

 disp(' ')

 index = find(t2~=0);

 location.ProfStats = k;

 location.Method = i;

 location.ProbRow = index ;

 location

 return

 end

116

 end

end

for i = 1:8

 s = zeros(n1*n2*n3,5);

 for j = 1:L

 t = ProfStats(j).Method(i).Prob(:,[1:2 6:8]);

 if j == 1

 s = t;

 else

 s(:,3:5) = s(:,3:5)+t(:,3:5);

 end

 end

 s(:,3:5) = s(:,3:5)/L;

 for k = 1:n1

 a = s(s(:,1)==x(k),:);

 y1(k,1) = sum(a(:,3))/size(a,1); %sol error %

 y2(k,1) = sum(a(:,4))/size(a,1); %False %

 y3(k,1) = sum(a(:,5))/size(a,1); %empty sol %

 end

 if i == 1

 Y1 = y1;

 Y2 = y2;

 Y3 = y3;

 else

 Y1 = [Y1 y1];

 Y2 = [Y2 y2];

 Y3 = [Y3 y3];

 end

end

%

%

strLine = {'-','-.','-','-.',':',':',':',':'};

strShape = {'o','*','s','<','.','*','s','v'};

% Plots based on ECAT ***

figure

for j = 4:8

 p=plot(x*10^3,Y1(:,j));

 set(p,'LineStyle',strLine{j},'Marker',strShape{j},'MarkerSize',8)

 hold on

end

set(findobj('Type','line'),'Color','k')

set(gca,'XGrid','off','YGrid','on')

set(gca,'XTick',ecat*10^3)

117

title(['Averaged Solutions of Sim. vs. Tolerance Data - Mag. ',num2str(Mag_Cut)])

% xlabel('Catalog Tolerance [mrad]')

ylabel('No Solution [%]')

% legend('Two','Liebe','LiebeVote','Bratt','Pyramid','CompPyr','ModPyr','PyrVote','Location','Best')

legend('Bratt','Pyramid','CompPyr','ModPyr','PyrVote','Location','Best')

figure

for j = 1:8

 p=plot(x*10^3,Y2(:,j));

 set(p,'LineStyle',strLine{j},'Marker',strShape{j},'MarkerSize',8)

 hold on

end

set(findobj('Type','line'),'Color','k')

set(gca,'XGrid','off','YGrid','on')

set(gca,'XTick',ecat*10^3)

title(['Avg. False Matches of Sim. Data - Mag. ',num2str(Mag_Cut)])

xlabel('Catalog Tolerance [mrad]')

ylabel('Failed Matches [%]')

legend('Two','Liebe','LiebeVote','Bratt','Pyramid','CompPyr','ModPyr','PyrVote','Location','Best')

figure

for j = 1:8

 p=plot(x*10^3,Y3(:,j));

 set(p,'LineStyle',strLine{j},'Marker',strShape{j},'MarkerSize',8)

 hold on

end

set(findobj('Type','line'),'Color','k')

set(gca,'XGrid','off','YGrid','on')

set(gca,'XTick',ecat*10^3)

title(['Avg. Empty Sol. of Sim. Data - Mag. ',num2str(Mag_Cut)])

xlabel('Catalog Tolerance [mrad]')

ylabel('Empty Sets [%]')

legend('Two','Liebe','LiebeVote','Bratt','Pyramid','CompPyr','ModPyr','PyrVote','Location','Best')

barY1 = sum(Y1,1)/length(ecat);

barY2 = sum(Y2,1)/length(ecat);

barY3 = sum(Y3,1)/length(ecat);

barY = [barY1;barY2;barY3];

bLegend = {'No Solution';'False Match';'Empty'};

figure

colormap(gray)

bar(1:8,barY')

set(gca,'XTickLabel',{'TwoStar','Liebe','LiebeVote','Bratt','Pyr','CompPyr','ModPyr','PyrVote'})

title(['Overall solution probability of Sim. data - Mag. ' num2str(Mag_Cut)])

xlabel('Identification Algorithm')

ylabel('Probability [%]')

legend(bLegend{:},'Location','Best')

118

Based on ECEN

clear y1 y2 y3 Y1 Y2 Y3 t a

x = ecen;

for i = 1:8

 s = zeros(n1*n2*n3,5);

 for j = 1:L

 t = ProfStats(j).Method(i).Prob(:,[1:2 6:8]);

 if j == 1

 s = t;

 else

 s(:,3:5) = s(:,3:5)+t(:,3:5);

 end

 end

 s(:,3:5) = s(:,3:5)/L;

 for k = 1:n2

 a = s(s(:,2)==x(k),:);

 y1(k,1) = sum(a(:,3))/size(a,1); %sol error %

 y2(k,1) = sum(a(:,4))/size(a,1); %False %

 y3(k,1) = sum(a(:,5))/size(a,1); %empty sol %

 end

 if i == 1

 Y1 = y1;

 Y2 = y2;

 Y3 = y3;

 else

 Y1 = [Y1 y1];

 Y2 = [Y2 y2];

 Y3 = [Y3 y3];

 end

end

% Plots based on ECEN ***

figure

subplot(3,1,1)

for j = 4:8

 p=plot(x*10^3,Y1(:,j));

 set(p,'LineStyle',strLine{j},'Marker',strShape{j},'MarkerSize',8)

 hold on

end

% xlabel('Centroid Tolerance [mrad]')

set(findobj('Type','line'),'Color','k')

119

set(gca,'XGrid','off','YGrid','on')

set(gca,'XTick',x*10^3)

ylabel('No Solution [%]')

% legend('Two','Liebe','LiebeVote','Bratt','Pyramid','CompPyr','ModPyr','PyrVote','Location','Best')

legend('Bratt','Pyramid','CompPyr','ModPyr','PyrVote','Location','Best')

title(['Averaged Failed Solutions of Sim. vs. Centroid Data - Mag. ',num2str(Mag_Cut)])

% figure

subplot(3,1,2)

for j = 4:8

 p=plot(x*10^3,Y2(:,j));

 set(p,'LineStyle',strLine{j},'Marker',strShape{j},'MarkerSize',8)

 hold on

end

% xlabel('Centroid Tolerance [mrad]')

set(findobj('Type','line'),'Color','k')

set(gca,'XGrid','off','YGrid','on')

set(gca,'XTick',x*10^3)

ylabel('Failed Matches [%]')

% legend('Two','Liebe','LiebeVote','Bratt','Pyramid','CompPyr','ModPyr','PyrVote','Location','Best')

% title(['Avg. % Failed ID''s of Sim. Data - Mag. ',num2str(Mag_Cut)])

figure

for j = 1:8

 p=plot(x*10^3,Y3(:,j));

 set(p,'LineStyle',strLine{j},'Marker',strShape{j},'MarkerSize',8)

 hold on

end

xlabel('Centroid Tolerance [mrad]')

set(findobj('Type','line'),'Color','k')

set(gca,'XGrid','off','YGrid','on')

set(gca,'XTick',x*10^3)

ylabel('Emtpy Solutions [%]')

legend('Two','Liebe','LiebeVote','Bratt','Pyramid','CompPyr','ModPyr','PyrVote','Location','Best')

title(['Avg. Empty Sol. of Sim. Data - Mag. ',num2str(Mag_Cut)])

clear j i k x y a b pot

L = 100;

strName = {'Two Star','Liebe','Liebe w/ Voting','Bratt','Pyramid',...

 'Comp. Pyramid','Mod. Pyramid','Pyramid w/ Voting'};

for j = 1:8

 b = 0;

 for i = 1:n3

 a = 0;

 for k = 1:L

120

 index = ProfStats(k).Method(j).Prob(:,3)==Nfake(i);

 pot = ProfStats(k).Method(j).Prob(index,:);

 a = pot(:,6:8)+a;

 end

 b = b + a/L;

 end

 b = b/n3;

 x = unique(pot(:,1));

 y = unique(pot(:,2));

 [X,Y] = meshgrid(x,y);

 Z1 = reshape(b(:,1),size(X));

 figure

 surf(X,Y,Z1)

 set(gca,'XTick',ecat,'YTick',ecen)

 xlabel('Catalog Tolerance [mrad]')

 ylabel('Centroid Tolerance [mrad]')

 zlabel('Percent [%] Error')

 title(['Solution Probability of Error of ' strName{j} ' method (Mag ' num2str(Mag_Cut) ')'])

 colormap(gray)

 Z2 = reshape(b(:,2),size(X));

 figure

 surf(X,Y,Z2)

 set(gca,'XTick',ecat,'YTick',ecen)

 xlabel('Catalog Tolerance [mrad]')

 ylabel('Centroid Tolerance [mrad]')

 zlabel('Percent [%] Error')

 title(['False ID Probability of Error of ' strName{j} ' method (Mag ' num2str(Mag_Cut) ')'])

 colormap(gray)

 Z3 = reshape(b(:,3),size(X));

 figure

 surf(X,Y,Z3)

 set(gca,'XTick',ecat,'YTick',ecen)

 xlabel('Catalog Tolerance [mrad]')

 ylabel('Centroid Tolerance [mrad]')

 zlabel('Percent [%] Error')

 title(['Empty Solution Probability of Error of ' strName{j} ' method (Mag ' num2str(Mag_Cut) ')'])

 colormap(gray)

end

%7 TwoStar

%8 Voting

%9 ThreeStar

%10 ThreeVote

%11 CompThree

%12 Pyramid

%13 Comp Pyr

%14 Pyr mod

%15 Pyr vote

q = 0;

121

for i = 7:15

 t = 0;

 for j = 1:L

 timing = ProfStats(j).data.FunctionTable(i).TotalTime/60;

 t = t+timing;

 end

 q = q + 1;

 t = sum(t)/L;

 Table(q,1).Time = t;

 Table(q,1).Name = ProfStats(j).data.FunctionTable(i).FunctionName;

end

II. Star Identification Program Codes

 The complete star identification algorithms are given here. Variable names, function calls,

mathematical usage, and formatting can all be seen.

A. Two Star with Voting Method

function [starID,starIDMod] = getTwoStar_ID(catalog,featurelist,spotlist,ecat)

% 2-star Voting Identification Algorithm

%

% Obtaines the dot-product angles of two stars and catalogs them with a

% vote if the angle is found to match within the field of the 'distlist'

% catalog. The assumption used is if the number of votes for a star is >=

% 75% of the length of 'spotlist' then it is a 'true' star.

%

% Inputs:

%

% featurelist - Sub-catalog created by the 'Dual_Feature_Extract.m'

% function

%

% spotlist - Sub-catalog created by the 'Camera_Ref_Frame.m' function

%

% ecat - Displacement error tolerance in 'distlist' search

%

% plots - 'On'/'Off' command. 'On' will show all plots and

% intermediate comments

%

% Outputs:

%

% starID - An N x 5 matrix, where N is the length of spotlist.

% Column 1: Entry number

% Column 2: HIP number found if catalog match is found

% Column 3-5: XYZ of spot

%

% Outputs starID as a structured array.

Feature Extraction

122

N = length(spotlist);

L = 0;

S = N*(N-1)/2; %S = N! / (2 * (N-num_star_in_pattern)!)

pattern(S,1) = struct('spot1',[],'spot2',[],'theta1',[]);

for j = 1:N-1

 %Primary spot in rotation

 A = spotlist(j).XYZ;

 spot1 = spotlist(j).spot;

 for i = j+1:N

 %Secondary spot in rotation

 B = spotlist(i).XYZ;

 spot2 = spotlist(i).spot;

 %Dot-product angle between spots

 theta = acos(dot(A,B)/(norm(A)*norm(B)));

 %Incremented Feature Table

 L = L + 1;

 pattern(L).spot1 = spot1;

 pattern(L).spot2 = spot2;

 pattern(L).theta1 = theta;

 end

end

Voting Sequence

[starID,starIDMod] = Voting_Algorithm(catalog,featurelist,spotlist,pattern,ecat,2);

End of Program.

end

B. Liebe’s Three Star Method

function [starID,starIDMod] = getThreeStar_ID(~,featurelist,spotlist,ecat)

% Leibe's 3 star Triad Star Identification Algorithm

%

% Obtaines the dot-products and interior angles of the two closest stars to

% a particular star. This is limited to only the two closest stars

% adjacent to a the star in question.

%

% Inputs:

%

% featurelist - Sub-catalog created by the 'Triad_Feature_Extract.m'

% function

%

% spotlist - Sub-catalog created by the 'Camera_Ref_Frame.m' function

123

%

% ecat - Displacement error tolerance in 'featurelist' search

%

% Plot - 'On'/'Off' command. 'On' will show all plots and

% intermediate comments

%

% Outputs:

%

% starID - An N x 5 matrix, where N is the length of spotlist.

% Column 1: Entry number

% Column 2: HIP number found if catalog match is found

% Column 3-5: XYZ of spot

%

% Outputs starID as a structured array.

Feature Extraction into 'pattern'

N = length(spotlist);

pattern(N,1) = struct('spot1',[],'spot2',[],'spot3',[],'theta1',[],...

 'theta2',[],'phi',[]);

for j = 1:N

 A = spotlist(j).XYZ;

 B = 0;

 C = 0;

 spot1 = spotlist(j).spot;

 spot2 = 0;

 spot3 = 0;

 theta1 = 360;

 theta2 = 360;

 for i = 1:N

 New = spotlist(i).XYZ;

 if New ~= A;

 theta = acos(dot(A,New)/(norm(A)*norm(New)));

 if theta < theta2 && theta > theta1

 theta2 = theta;

 spot3 = spotlist(i).spot;

 C = New;

 elseif theta < theta1

 theta2 = theta1;

 theta1 = theta;

 spot3 = spot2;

 spot2 = spotlist(i).spot;

 C = B;

 B = New;

124

 end

 end

 end

 %GET interior angle (phi)

 Vec1 = B-A;

 Vec2 = C-A;

 v1 = sqrt(Vec1(1)^2+Vec1(2)^2+Vec1(3)^2);

 v2 = sqrt(Vec2(1)^2+Vec2(2)^2+Vec2(3)^2);

 phi = acos(dot(Vec1,Vec2)/(v1*v2));

 if theta1 > theta2

 ang1 = theta2;

 ang2 = theta1;

 Spot2 = spot3;

 Spot3 = spot2;

 else

 ang1 = theta1;

 ang2 = theta2;

 Spot2 = spot2;

 Spot3 = spot3;

 end

 %Incremented pattern structure

 pattern(j).spot1 = spot1;

 pattern(j).spot2 = Spot2;

 pattern(j).spot3 = Spot3;

 pattern(j).theta1 = ang1;

 pattern(j).theta2 = ang2;

 pattern(j).phi = phi;

end

Search Featurelist GET matches

match(N,1) = struct('spot1',[],'spot2',[],'spot3',[],'theta1',[],...

 'theta2',[],'phi',[]);

fAng1 = [featurelist.feat.theta1];

fAng2 = [featurelist.feat.theta2];

fAng3 = [featurelist.feat.phi];

for i = 1:N

 high1 = pattern(i).theta1+ecat;

 low1 = pattern(i).theta1-ecat;

 high2 = pattern(i).theta2+ecat;

 low2 = pattern(i).theta2-ecat;

 high3 = pattern(i).phi+ecat;

 low3 = pattern(i).phi-ecat;

 ind1 = fAng1<=high1;

 ind2 = fAng1>=low1 ;

 ind3 = fAng2<=high2;

 ind4 = fAng2>=low2 ;

 ind5 = fAng3<=high3;

125

 ind6 = fAng3>=low3 ;

 index = (ind1 & ind2 & ind3 & ind4 & ind5 & ind6);

 if sum(index) == 0

 match(i).spot1 = 0;

 match(i).spot2 = 0;

 match(i).spot3 = 0;

 match(i).theta1 = 0;

 match(i).theta2 = 0;

 match(i).phi = 0;

 else

 match(i).spot1 = featurelist.feat(index).HipID1;

 match(i).spot2 = featurelist.feat(index).HipID2;

 match(i).spot3 = featurelist.feat(index).HipID3;

 match(i).theta1 = featurelist.feat(index).theta1;

 match(i).theta2 = featurelist.feat(index).theta2;

 match(i).phi = featurelist.feat(index).phi;

 end

end

Pairing of Spots to Stars (mini voting)

starID(N,1) = struct('votes',[],'spot',[],'HipID',[],'XYZ',[]);

ps1 = [pattern.spot1];

ps2 = [pattern.spot2];

ps3 = [pattern.spot3];

ms1 = [match.spot1];

ms2 = [match.spot2];

ms3 = [match.spot3];

for i = 1:N

 hip1 = ms1(ps1==i);

 hip2 = ms2(ps2==i);

 hip3 = ms3(ps3==i);

 hip = [hip1 hip2 hip3];

 hip = hip(hip ~= 0);

 uhip = unique(hip); %Unique set of HIP# found from quick list 'hip'

 s = size(uhip,2);

 votes = zeros(s,1);

 if ~isempty(uhip);

 for j = 1:s

 votes(j) = sum(hip == uhip(j));

 end

126

 [vote,index] = max(votes);

 starID(i).votes = vote;

 starID(i).HipID = uhip(index);

 else

 starID(i).votes = 0;

 starID(i).HipID = 0;

 end

 starID(i).spot = i;

 starID(i).XYZ = spotlist(i).XYZ;

end

starIDMod = starID;

End of Program.

end

C. Liebe’s Method with Voting

function [starID,starIDMod] = getThreeStarVote_ID(catalog,featurelist,spotlist,ecat)

% Leibe's 3 star Triad Star Identification Algorithm w/ Voting

%

% Obtaines the dot-products and interior angles of the two closest stars to

% a particular star. This is limited to only the two closest stars

% adjacent to a the star in question.

%

% Inputs:

%

% featurelist - Sub-catalog created by the 'Triad_Feature_Extract.m'

% function

%

% spotlist - Sub-catalog created by the 'Camera_Ref_Frame.m' function

%

% ecat - Displacement error tolerance in 'featurelist' search

%

% Plot - 'On'/'Off' command. 'On' will show all plots and

% intermediate comments

%

% Outputs:

%

% starID - An N x 5 matrix, where N is the length of spotlist.

% Column 1: Entry number

% Column 2: HIP number found if catalog match is found

% Column 3-5: XYZ of spot

%

% Outputs starID as a structured array.

Feature Extraction

N = length(spotlist);

127

pattern(N,1) = struct('spot1',[],'spot2',[],'spot3',[],'theta1',[],...

 'theta2',[],'phi',[]);

for j = 1:N

 A = spotlist(j).XYZ;

 B = 0;

 C = 0;

 spot1 = spotlist(j).spot;

 spot2 = 0;

 spot3 = 0;

 theta1 = 360;

 theta2 = 360;

 for i = 1:N

 New = spotlist(i).XYZ;

 if New ~= A;

 theta = acos(dot(A,New)/(norm(A)*norm(New)));

 if theta < theta2 && theta > theta1

 theta2 = theta;

 spot3 = spotlist(i).spot;

 C = New;

 elseif theta < theta1

 theta2 = theta1;

 theta1 = theta;

 spot3 = spot2;

 spot2 = spotlist(i).spot;

 C = B;

 B = New;

 end

 end

 end

 %GET interior angle (phi)

 Vec1 = B-A;

 Vec2 = C-A;

 v1 = sqrt(Vec1(1)^2+Vec1(2)^2+Vec1(3)^2);

 v2 = sqrt(Vec2(1)^2+Vec2(2)^2+Vec2(3)^2);

 phi = acos(dot(Vec1,Vec2)/(v1*v2));

 if theta1 > theta2

 ang1 = theta2;

 ang2 = theta1;

 Spot2 = spot3;

 Spot3 = spot2;

 else

 ang1 = theta1;

128

 ang2 = theta2;

 Spot2 = spot2;

 Spot3 = spot3;

 end

 %Incremented pattern structure

 pattern(j).spot1 = spot1;

 pattern(j).spot2 = Spot2;

 pattern(j).spot3 = Spot3;

 pattern(j).theta1 = ang1;

 pattern(j).theta2 = ang2;

 pattern(j).phi = phi;

end

Voting Algorithm

[starID,starIDMod] = Voting_Algorithm(catalog,featurelist,spotlist,pattern,ecat,3);

End of Program.

end

D. Brätt’s Three Star Comprehensive with Voting

function [starID,starIDMod] = getCompThreeStar_ID(catalog,featurelist,spotlist,ecat)

% Leibe's 3 star Triad Star Identification Algorithm with Voting Method

%

% Obtaines the dot-products and interior angles of the two closest stars to

% a particular star. This is limited to only the two closest stars

% adjacent to a the star in question.

%

% Inputs:

%

% featurelist - Sub-catalog created by the 'Triad_Feature_Extract.m'

% function

%

% spotlist - Sub-catalog created by the 'Camera_Ref_Frame.m' function

%

% ecat - Displacement error tolerance in 'featurelist' search

%

% plots - 'On'/'Off' command. 'On' will show all plots and

% intermediate comments

%

% Outputs:

%

% starID - An N x 5 matrix, where N is the length of spotlist.

% Column 1: Entry number

% Column 2: HIP number found if catalog match is found

% Column 3-5: XYZ of spot

%

% Outputs starID as a structured array.

Feature Extraction

129

N = length(spotlist);

L = 0;

S = N*(N-1)*(N-2)/2; %S = N! / (2 * (N-num_star_in_pattern)!)

pattern(S,1) = struct('spot1',[],'spot2',[],'spot3',[],'theta1',[],...

 'theta2',[],'phi',[]);

for i = 1:N

 spot1 = spotlist(i).spot;

 A = spotlist(i).XYZ;

 for j = 1:N

 if i ~= j

 spot2 = spotlist(j).spot;

 B = spotlist(j).XYZ;

 ang1 = acos(dot(A,B)/(norm(A)*norm(B)));

 for k = 1:N

 if k ~= i && k > j

 spot3 = spotlist(k).spot;

 C = spotlist(k).XYZ;

 ang2 = acos(dot(A,C)/(norm(A)*norm(C)));

 Vec1 = B-A;

 Vec2 = C-A;

 v1 = sqrt(Vec1(1)^2+Vec1(2)^2+Vec1(3)^2);

 v2 = sqrt(Vec2(1)^2+Vec2(2)^2+Vec2(3)^2);

 phi = acos(dot(Vec1,Vec2)/(v1*v2));

 if ang1 > ang2

 theta1 = ang2;

 theta2 = ang1;

 Spot2 = spot3;

 Spot3 = spot2;

 else

 theta1 = ang1;

 theta2 = ang2;

 Spot2 = spot2;

 Spot3 = spot3;

 end

 %Incremented Feature Table

 L = L + 1;

 pattern(L).spot1 = spot1;

 pattern(L).spot2 = Spot2;

 pattern(L).spot3 = Spot3;

 pattern(L).theta1 = theta1;

 pattern(L).theta2 = theta2;

130

 pattern(L).phi = phi;

 end

 end

 end

 end

end

Voting Sequence

[starID,starIDMod] = Voting_Algorithm(catalog,featurelist,spotlist,pattern,ecat,3);

End of Program.

end

E. Constrained Pyramid Method

function [starID,starIDMod] = getPyramid_ID(~,featurelist,spotlist,ecat)

%Mortari's Pyramid Algorithm. Creates a list of patterns described by 6

%features each using 3 stars. These patterns are checked against a feature

%list, one pattern at a time, using a 4th star as a verification tool. If

%all 4 spots match to stars in the feature list, then the spots are marked,

%their HIP# recorded, and the output is a table of all spots in the image,

%their location, and only the 4 spots that were recognized will have a HIP

%ID.

%Length of spotlist

N = length(spotlist);

%Initialize structure

starID(N,1) = struct('votes',[],'spot',[],'HipID',[],'XYZ',[]);

%Pad with zeros and with known info

[starID.votes] = deal(0);

[starID.spot] = spotlist.spot;

[starID.HipID] = deal(0);

[starID.XYZ] = spotlist.XYZ;

%Preallocated variable

starIDMod = starID;

Algorithm Model

if N < 4 % Early Failure Detection, requires min. 4 spots in image to proc.

else %Process Image and Analyze

Pattern Creation

 %Pattern size: N! / (6 * [N-3]!)

 S = N*(N-1)*(N-2)/6;

 %Initialize structured array

 pattern(S,1) = struct('spot1',[],'spot2',[],'spot3',[],...

131

 'theta1',[],'theta2',[],'theta3',[],...

 'phi1',[],'phi2',[],'phi3',[]);

 %Pattern Counter

 L = 0;

 %Create Patterns

 for i = 1:N-2

 %Find 1st spot and vector

 spot1 = spotlist(i).spot;

 A = spotlist(i).XYZ;

 for j = i+1:N-1

 %Find 2nd spot and vector

 spot2 = spotlist(j).spot;

 B = spotlist(j).XYZ;

 %Find 1st Feature

 theta1 = acos(dot(A,B));

 for k = j+1:N

 %Find 3rd spot and vector

 spot3 = spotlist(k).spot;

 C = spotlist(k).XYZ;

 %Find 2nd and 3rd Features

 theta2 = acos(dot(A,C)/(norm(A)*norm(C)));

 theta3 = acos(dot(B,C)/(norm(B)*norm(C)));

 %Calculate Interior Angles

 V12 = B-A;

 V13 = C-A;

 V23 = C-B;

 v12 = sqrt(V12(1)^2+V12(2)^2+V12(3)^2);

 v13 = sqrt(V13(1)^2+V13(2)^2+V13(3)^2);

 v23 = sqrt(V23(1)^2+V23(2)^2+V23(3)^2);

 %Interior angles: Features 4->6

 phi1 = acos(dot(V12,V13)/(v12*v13));

 phi2 = acos(dot(V12,V23)/(v12*v23));

 phi3 = acos(dot(V13,V23)/(v13*v23));

 %Sort Features based on smallest theta angle

 if theta1 < theta2 && theta1 < theta3

 if theta2 < theta3

 S1 = spot1; S2 = spot2; S3 = spot3;

 T1 = theta1; T2 = theta2; T3 = theta3;

 P1 = phi1; P2 = phi2; P3 = phi3;

 else

 S1 = spot2; S2 = spot1; S3 = spot3;

 T1 = theta1; T2 = theta3; T3 = theta2;

 P1 = phi1; P2 = phi3; P3 = phi2;

 end

 elseif theta2 < theta1 && theta2 < theta3

132

 if theta1 < theta3

 S1 = spot1; S2 = spot3; S3 = spot2;

 T1 = theta2; T2 = theta1; T3 = theta3;

 P1 = phi2; P2 = phi1; P3 = phi3;

 else

 S1 = spot3; S2 = spot1; S3 = spot2;

 T1 = theta2; T2 = theta3; T3 = theta1;

 P1 = phi2; P2 = phi3; P3 = phi1;

 end

 elseif theta3 < theta1 && theta3 < theta2

 if theta1 < theta2

 S1 = spot2; S2 = spot3; S3 = spot1;

 T1 = theta3; T2 = theta1; T3 = theta2;

 P1 = phi3; P2 = phi1; P3 = phi2;

 else

 S1 = spot3; S2 = spot2; S3 = spot1;

 T1 = theta3; T2 = theta2; T3 = theta1;

 P1 = phi3; P2 = phi2; P3 = phi1;

 end

 end

 %Update Pattern Counter

 L = L + 1;

 %Input Pattern

 pattern(L).spot1 = S1;

 pattern(L).spot2 = S2;

 pattern(L).spot3 = S3;

 pattern(L).theta1 = T1;

 pattern(L).theta2 = T2;

 pattern(L).theta3 = T3;

 pattern(L).phi1 = P1;

 pattern(L).phi2 = P2;

 pattern(L).phi3 = P3;

 end

 end

 end

Pattern Identification

 %Pre-allocate for increased index search speed

 fAng1 = [featurelist.feat.theta1];

 fAng2 = [featurelist.feat.theta2];

 fAng3 = [featurelist.feat.theta3];

 fPhi1 = [featurelist.feat.phi1];

 fPhi2 = [featurelist.feat.phi2];

 fPhi3 = [featurelist.feat.phi3];

 patsp1 = [pattern.spot1];

 patsp2 = [pattern.spot2];

 patsp3 = [pattern.spot3];

133

 %Array of spots

 ns = 1:N;

 %

 for i = 1:S

 %New variables for ease in coding

 starnum(1) = pattern(i).spot1;

 starnum(2) = pattern(i).spot2;

 starnum(3) = pattern(i).spot3;

 %Search for next 'spots' to build future triads

 index = (ns>starnum(1) & ns>starnum(2) & ns>starnum(3));

 star4set = ns(index ~= 0);

 %

 for j = 1:length(star4set)

 %New 4th spot chosen

 starnum(4) = star4set(j);

 %Search for new triads using all 4 spots using indexing

 i1 = (patsp1 == starnum(1) |...

 patsp1 == starnum(2) |...

 patsp1 == starnum(3) |...

 patsp1 == starnum(4));

 i2 = (patsp2 == starnum(1) |...

 patsp2 == starnum(2) |...

 patsp2 == starnum(3) |...

 patsp2 == starnum(4));

 i3 = (patsp3 == starnum(1) |...

 patsp3 == starnum(2) |...

 patsp3 == starnum(3) |...

 patsp3 == starnum(4));

 %Create new Image Pyramid

 Pyramid = pattern(i1&i2&i3);

 %Initialize Featurelist Pyramid

 FPyramid = cell(4,1);

 %Add tolerances and search Featurelist

 for k = 1:4

 %Search tolerance added to image

 H1 = Pyramid(k).theta1+ecat; L1 = Pyramid(k).theta1-ecat;

 H2 = Pyramid(k).theta2+ecat; L2 = Pyramid(k).theta2-ecat;

 H3 = Pyramid(k).theta3+ecat; L3 = Pyramid(k).theta3-ecat;

 H4 = Pyramid(k).phi1+ecat; L4 = Pyramid(k).phi1-ecat;

 H5 = Pyramid(k).phi2+ecat; L5 = Pyramid(k).phi2-ecat;

 H6 = Pyramid(k).phi3+ecat; L6 = Pyramid(k).phi3-ecat;

 %Indexing of tolerances

 ind1 = fAng1 <= H1; ind2 = fAng1 >= L1;

134

 ind3 = fAng2 <= H2; ind4 = fAng2 >= L2;

 ind5 = fAng3 <= H3; ind6 = fAng3 >= L3;

 ind7 = fPhi1 <= H4; ind8 = fPhi1 >= L4;

 ind9 = fPhi2 <= H5; ind10 = fPhi2 >= L5;

 ind11 = fPhi3 <= H6; ind12 = fPhi3 >= L6;

 %Location in Featurelist for match

 Findex = (ind1 & ind2 & ind3 & ind4 & ind5 & ind6 &...

 ind7 & ind8 & ind9 & ind10 & ind11 & ind12);

 %New Featurelist Pyramid

 FPyramid(k) = {featurelist.feat(Findex)};

 end

 %Check if F.Pyramid is empty

 L1 = length(FPyramid{1}); L2 = length(FPyramid{2});

 L3 = length(FPyramid{3}); L4 = length(FPyramid{4});

 %Verify if F.Pyramid is valid for use, else use new 4th spot

 if L1 == 0 || L2 == 0 || L3 == 0 || L4 == 0

 else

 list = zeros(12,2);

 n = 0;

 %First Identification Process

 for k = 1:4

 h1 = [FPyramid{k}.HipID1]; %HIP's found

 u = unique(h1); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index1 = h1 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index1); %TAG: number of times value u(m) is found in HIP

 end

 [~,index1] = max(tag); %Location in TAG for max similar entries of u

 h2 = [FPyramid{k}.HipID2]; %HIP's found

 u = unique(h2); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index2 = h2 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index2); %TAG: number of times value u(m) is found in HIP

 end

 [~,index2] = max(tag); %Location in TAG for max similar entries of u

 h3 = [FPyramid{k}.HipID3]; %HIP's found

 u = unique(h3); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

135

 for m = 1:lu

 index3 = h3 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index3); %TAG: number of times value u(m) is found in HIP

 end

 [~,index3] = max(tag); %Location in TAG for max similar entries of u

 %Update LIST entry and counter

 n = n(end)+1:n(end)+3;

 list(n,:) = [Pyramid(k).spot1 h1(index1)

 Pyramid(k).spot2 h2(index2)

 Pyramid(k).spot3 h3(index3)];

 end

 %Final Identification and Output

 for k = 1:N

 %Find all HIP's for spot 'k'

 H = list(list(:,1) == k ,2);

 if ~isempty(H)

 u = unique(H); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index = H == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index); %TAG: number of times value u(m) is found in HIP

 end

 [ntags,index] = max(tag); %Location in TAG for max similar entries of u

 %Input results to Structured output

 starID(k).votes = ntags;

 starID(k).spot = k;

 starID(k).HipID = u(index);

 starID(k).XYZ = spotlist(k).XYZ;

 %[Variable for use in DAVID FOWLER codes]

 starIDMod = starID;

 else

 end

 end

 %Identification has completed and results recorded,

 %terminate further need to identify image

 return

 end

 end

 end

136

end

End of Program.

end

F. Comprehensive Pyramid Method

function [starID,starIDMod] = getCompPyramid_ID(~,featurelist,spotlist,ecat)

%Mortari's Pyramid Algorithm. Creates a list of patterns described by 6

%features each using 3 stars. These patterns are checked against a feature

%list, one pattern at a time, using a 4th star as a verification tool. If

%all 4 spots match to stars in the feature list, then the spots are marked,

%their HIP# recorded, and the output is a table of all spots in the image,

%their location, and only the 4 spots that were recognized will have a HIP

%ID.

%Length of spotlist

N = length(spotlist);

%Initialize structure

starID(N,1) = struct('votes',[],'spot',[],'HipID',[],'XYZ',[]);

%Pad with zeros and with known info

[starID.votes] = deal(0);

[starID.spot] = spotlist.spot;

[starID.HipID] = deal(0);

[starID.XYZ] = spotlist.XYZ;

%Preallocated variable

starIDMod = starID;

Algorithm Model

if N < 4 % Early Failure Detection, requires min. 4 spots in image to proc.

else %Process Image and Analyze

Pattern Creation

 %Pattern size: N! / (6 * [N-3]!)

 S = N*(N-1)*(N-2)/6;

 %Initialize structured array

 pattern(S,1) = struct('spot1',[],'spot2',[],'spot3',[],...

 'theta1',[],'theta2',[],'theta3',[],...

 'phi1',[],'phi2',[],'phi3',[]);

 %Pattern Counter

 L = 0;

 %Create Patterns

 for i = 1:N-2

 %Find 1st spot and vector

137

 spot1 = spotlist(i).spot;

 A = spotlist(i).XYZ;

 for j = i+1:N-1

 %Find 2nd spot and vector

 spot2 = spotlist(j).spot;

 B = spotlist(j).XYZ;

 %Find 1st Feature

 theta1 = acos(dot(A,B));

 for k = j+1:N

 %Find 3rd spot and vector

 spot3 = spotlist(k).spot;

 C = spotlist(k).XYZ;

 %Find 2nd and 3rd Features

 theta2 = acos(dot(A,C)/(norm(A)*norm(C)));

 theta3 = acos(dot(B,C)/(norm(B)*norm(C)));

 %Calculate Interior Angles

 V12 = B-A;

 V13 = C-A;

 V23 = C-B;

 v12 = sqrt(V12(1)^2+V12(2)^2+V12(3)^2);

 v13 = sqrt(V13(1)^2+V13(2)^2+V13(3)^2);

 v23 = sqrt(V23(1)^2+V23(2)^2+V23(3)^2);

 %Interior angles: Features 4->6

 phi1 = acos(dot(V12,V13)/(v12*v13));

 phi2 = acos(dot(V12,V23)/(v12*v23));

 phi3 = acos(dot(V13,V23)/(v13*v23));

 %Sort Features based on smallest theta angle

 if theta1 < theta2 && theta1 < theta3

 if theta2 < theta3

 S1 = spot1; S2 = spot2; S3 = spot3;

 T1 = theta1; T2 = theta2; T3 = theta3;

 P1 = phi1; P2 = phi2; P3 = phi3;

 else

 S1 = spot2; S2 = spot1; S3 = spot3;

 T1 = theta1; T2 = theta3; T3 = theta2;

 P1 = phi1; P2 = phi3; P3 = phi2;

 end

 elseif theta2 < theta1 && theta2 < theta3

 if theta1 < theta3

 S1 = spot1; S2 = spot3; S3 = spot2;

 T1 = theta2; T2 = theta1; T3 = theta3;

 P1 = phi2; P2 = phi1; P3 = phi3;

 else

 S1 = spot3; S2 = spot1; S3 = spot2;

 T1 = theta2; T2 = theta3; T3 = theta1;

 P1 = phi2; P2 = phi3; P3 = phi1;

138

 end

 elseif theta3 < theta1 && theta3 < theta2

 if theta1 < theta2

 S1 = spot2; S2 = spot3; S3 = spot1;

 T1 = theta3; T2 = theta1; T3 = theta2;

 P1 = phi3; P2 = phi1; P3 = phi2;

 else

 S1 = spot3; S2 = spot2; S3 = spot1;

 T1 = theta3; T2 = theta2; T3 = theta1;

 P1 = phi3; P2 = phi2; P3 = phi1;

 end

 end

 %Update Pattern Counter

 L = L + 1;

 %Input Pattern

 pattern(L).spot1 = S1;

 pattern(L).spot2 = S2;

 pattern(L).spot3 = S3;

 pattern(L).theta1 = T1;

 pattern(L).theta2 = T2;

 pattern(L).theta3 = T3;

 pattern(L).phi1 = P1;

 pattern(L).phi2 = P2;

 pattern(L).phi3 = P3;

 end

 end

 end

Pattern Identification

 %Pre-allocate for increased index search speed

 fAng1 = [featurelist.feat.theta1];

 fAng2 = [featurelist.feat.theta2];

 fAng3 = [featurelist.feat.theta3];

 fPhi1 = [featurelist.feat.phi1];

 fPhi2 = [featurelist.feat.phi2];

 fPhi3 = [featurelist.feat.phi3];

 patsp1 = [pattern.spot1];

 patsp2 = [pattern.spot2];

 patsp3 = [pattern.spot3];

 %Array of spots

 ns = 1:N;

 %

 for i = 1:S

 %New variables for ease in coding

 starnum(1) = pattern(i).spot1;

139

 starnum(2) = pattern(i).spot2;

 starnum(3) = pattern(i).spot3;

 %Search for next 'spots' to build future triads

 index = (ns>starnum(1) & ns>starnum(2) & ns>starnum(3));

 star4set = ns(index ~= 0);

 %

 for j = 1:length(star4set)

 %New 4th spot chosen

 starnum(4) = star4set(j);

 %Search for new triads using all 4 spots using indexing

 i1 = (patsp1 == starnum(1) |...

 patsp1 == starnum(2) |...

 patsp1 == starnum(3) |...

 patsp1 == starnum(4));

 i2 = (patsp2 == starnum(1) |...

 patsp2 == starnum(2) |...

 patsp2 == starnum(3) |...

 patsp2 == starnum(4));

 i3 = (patsp3 == starnum(1) |...

 patsp3 == starnum(2) |...

 patsp3 == starnum(3) |...

 patsp3 == starnum(4));

 %Create new Image Pyramid

 Pyramid = pattern(i1&i2&i3);

 %Initialize Featurelist Pyramid

 FPyramid = cell(4,1);

 if length(Pyramid) < 4

 dbstop getCompPyramid_ID.m at 201

 end

 %Add tolerances and search Featurelist

 for k = 1:4

 %Search tolerance added to image

 H1 = Pyramid(k).theta1+ecat; L1 = Pyramid(k).theta1-ecat;

 H2 = Pyramid(k).theta2+ecat; L2 = Pyramid(k).theta2-ecat;

 H3 = Pyramid(k).theta3+ecat; L3 = Pyramid(k).theta3-ecat;

 H4 = Pyramid(k).phi1+ecat; L4 = Pyramid(k).phi1-ecat;

 H5 = Pyramid(k).phi2+ecat; L5 = Pyramid(k).phi2-ecat;

 H6 = Pyramid(k).phi3+ecat; L6 = Pyramid(k).phi3-ecat;

 %Indexing of tolerances

 ind1 = fAng1 <= H1; ind2 = fAng1 >= L1;

 ind3 = fAng2 <= H2; ind4 = fAng2 >= L2;

 ind5 = fAng3 <= H3; ind6 = fAng3 >= L3;

 ind7 = fPhi1 <= H4; ind8 = fPhi1 >= L4;

 ind9 = fPhi2 <= H5; ind10 = fPhi2 >= L5;

 ind11 = fPhi3 <= H6; ind12 = fPhi3 >= L6;

140

 %Location in Featurelist for match

 Findex = (ind1 & ind2 & ind3 & ind4 & ind5 & ind6 &...

 ind7 & ind8 & ind9 & ind10 & ind11 & ind12);

 %New Featurelist Pyramid

 FPyramid(k) = {featurelist.feat(Findex)};

 end

 %Check if F.Pyramid is empty

 L1 = length(FPyramid{1}); L2 = length(FPyramid{2});

 L3 = length(FPyramid{3}); L4 = length(FPyramid{4});

 %Verify if F.Pyramid is valid for use, else use new 4th spot

 if L1 == 0 || L2 == 0 || L3 == 0 || L4 == 0

 else

 list = zeros(12,2);

 n = 0;

 %First Identification Process

 for k = 1:4

 h1 = [FPyramid{k}.HipID1]; %HIP's found

 u = unique(h1); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index1 = h1 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index1); %TAG: number of times value u(m) is found in HIP

 end

 [~,index1] = max(tag); %Location in TAG for max similar entries of u

 h2 = [FPyramid{k}.HipID2]; %HIP's found

 u = unique(h2); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index2 = h2 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index2); %TAG: number of times value u(m) is found in HIP

 end

 [~,index2] = max(tag); %Location in TAG for max similar entries of u

 h3 = [FPyramid{k}.HipID3]; %HIP's found

 u = unique(h3); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index3 = h3 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index3); %TAG: number of times value u(m) is found in HIP

 end

141

 [~,index3] = max(tag); %Location in TAG for max similar entries of u

 %Update LIST entry and counter

 n = n(end)+1:n(end)+3;

 list(n,:) = [Pyramid(k).spot1 h1(index1)

 Pyramid(k).spot2 h2(index2)

 Pyramid(k).spot3 h3(index3)];

 end

 %Final Identification and Output

 for k = 1:N

 %Find all HIP's for spot 'k'

 H = list(list(:,1) == k ,2);

 if ~isempty(H)

 u = unique(H); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index = H == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index); %TAG: number of times value u(m) is found in HIP

 end

 [ntags,index] = max(tag); %Location in TAG for max similar entries of u

 %Input results to Structured output

 starID(k).votes = ntags;

 starID(k).spot = k;

 starID(k).HipID = u(index);

 starID(k).XYZ = spotlist(k).XYZ;

 %[Variable for use in DAVID FOWLER codes]

 starIDMod = starID;

 else

 end

 end

 %Identification has completed and results recorded,

 %terminate further need to identify image

% return

 end

 end

 end

end

End of Program.

end

142

G. Modified Pyramid Method

function [starID,starIDMod] = getPyramid_ID_mod(~,featurelist,spotlist,ecat)

%Mortari's Pyramid Algorithm. Creates a list of patterns described by 6

%features each using 3 stars. These patterns are checked against a feature

%list, one pattern at a time, using a 4th star as a verification tool. If

%all 4 spots match to stars in the feature list, then the spots are marked,

%their HIP# recorded, and the output is a table of all spots in the image,

%their location, and only the 4 spots that were recognized will have a HIP

%ID.

%Length of spotlist

N = length(spotlist);

%Initialize structure

starID(N,1) = struct('votes',[],'spot',[],'HipID',[],'XYZ',[]);

%Pad with zeros and with known info

[starID.votes] = deal(0);

[starID.spot] = spotlist.spot;

[starID.HipID] = deal(0);

[starID.XYZ] = spotlist.XYZ;

%Preallocated variable

starIDMod = starID;

Algorithm Model

if N < 4 % Early Failure Detection, requires min. 4 spots in image to proc.

else %Process Image and Analyze

Pattern Creation

 %Pattern size: N! / (6 * [N-3]!)

 S = N*(N-1)*(N-2)/6;

 %Initialize structured array

 pattern(S,1) = struct('spot1',[],'spot2',[],'spot3',[],...

 'theta1',[],'theta2',[],'theta3',[],...

 'phi1',[],'phi2',[],'phi3',[]);

 %Pattern Counter

 L = 0;

 %Create Patterns

 for i = 1:N-2

 %Find 1st spot and vector

 spot1 = spotlist(i).spot;

 A = spotlist(i).XYZ;

 for j = i+1:N-1

 %Find 2nd spot and vector

 spot2 = spotlist(j).spot;

143

 B = spotlist(j).XYZ;

 %Find 1st Feature

 theta1 = acos(dot(A,B));

 for k = j+1:N

 %Find 3rd spot and vector

 spot3 = spotlist(k).spot;

 C = spotlist(k).XYZ;

 %Find 2nd and 3rd Features

 theta2 = acos(dot(A,C)/(norm(A)*norm(C)));

 theta3 = acos(dot(B,C)/(norm(B)*norm(C)));

 if ~isreal(theta2)

 theta2 = 0;

 elseif ~isreal(theta3)

 theta3 = 0;

 end

 %Calculate Interior Angles

 V12 = B-A;

 V13 = C-A;

 V23 = C-B;

 v12 = sqrt(V12(1)^2+V12(2)^2+V12(3)^2);

 v13 = sqrt(V13(1)^2+V13(2)^2+V13(3)^2);

 v23 = sqrt(V23(1)^2+V23(2)^2+V23(3)^2);

 %Interior angles: Features 4->6

 phi1 = acos(dot(V12,V13)/(v12*v13));

 phi2 = acos(dot(V12,V23)/(v12*v23));

 phi3 = acos(dot(V13,V23)/(v13*v23));

 %Sort Features based on smallest theta angle

 if theta1 < theta2 && theta1 < theta3

 if theta2 < theta3

 S1 = spot1; S2 = spot2; S3 = spot3;

 T1 = theta1; T2 = theta2; T3 = theta3;

 P1 = phi1; P2 = phi2; P3 = phi3;

 else

 S1 = spot2; S2 = spot1; S3 = spot3;

 T1 = theta1; T2 = theta3; T3 = theta2;

 P1 = phi1; P2 = phi3; P3 = phi2;

 end

 elseif theta2 < theta1 && theta2 < theta3

 if theta1 < theta3

 S1 = spot1; S2 = spot3; S3 = spot2;

 T1 = theta2; T2 = theta1; T3 = theta3;

 P1 = phi2; P2 = phi1; P3 = phi3;

 else

 S1 = spot3; S2 = spot1; S3 = spot2;

 T1 = theta2; T2 = theta3; T3 = theta1;

 P1 = phi2; P2 = phi3; P3 = phi1;

 end

144

 elseif theta3 < theta1 && theta3 < theta2

 if theta1 < theta2

 S1 = spot2; S2 = spot3; S3 = spot1;

 T1 = theta3; T2 = theta1; T3 = theta2;

 P1 = phi3; P2 = phi1; P3 = phi2;

 else

 S1 = spot3; S2 = spot2; S3 = spot1;

 T1 = theta3; T2 = theta2; T3 = theta1;

 P1 = phi3; P2 = phi2; P3 = phi1;

 end

 end

 %Update Pattern Counter

 L = L + 1;

 %Input Pattern

 pattern(L).spot1 = S1;

 pattern(L).spot2 = S2;

 pattern(L).spot3 = S3;

 pattern(L).theta1 = T1;

 pattern(L).theta2 = T2;

 pattern(L).theta3 = T3;

 pattern(L).phi1 = P1;

 pattern(L).phi2 = P2;

 pattern(L).phi3 = P3;

 end

 end

 end

Pattern Identification

 %Pre-allocate for increased index search speed

 fAng1 = [featurelist.feat.theta1];

 fAng2 = [featurelist.feat.theta2];

 fAng3 = [featurelist.feat.theta3];

 fPhi1 = [featurelist.feat.phi1];

 fPhi2 = [featurelist.feat.phi2];

 fPhi3 = [featurelist.feat.phi3];

 patsp1 = [pattern.spot1];

 patsp2 = [pattern.spot2];

 patsp3 = [pattern.spot3];

 %Array of spots

 ns = 1:N;

 %

 for i = 1:S

 %New variables for ease in coding

 starnum(1) = pattern(i).spot1;

 starnum(2) = pattern(i).spot2;

145

 starnum(3) = pattern(i).spot3;

 %Search for next 'spots' to build future triads

 index = (ns>starnum(1) & ns>starnum(2) & ns>starnum(3));

 star4set = ns(index ~= 0);

 %

 for j = 1:length(star4set)

 %New 4th spot chosen

 starnum(4) = star4set(j);

 %Search for new triads using all 4 spots using indexing

 i1 = (patsp1 == starnum(1) |...

 patsp1 == starnum(2) |...

 patsp1 == starnum(3) |...

 patsp1 == starnum(4));

 i2 = (patsp2 == starnum(1) |...

 patsp2 == starnum(2) |...

 patsp2 == starnum(3) |...

 patsp2 == starnum(4));

 i3 = (patsp3 == starnum(1) |...

 patsp3 == starnum(2) |...

 patsp3 == starnum(3) |...

 patsp3 == starnum(4));

 %Create new Image Pyramid

 Pyramid = pattern(i1&i2&i3);

 %Initialize Featurelist Pyramid

 FPyramid = cell(4,1);

 %Add tolerances and search Featurelist

 for k = 1:4

 %Search tolerance added to image

 H1 = Pyramid(k).theta1+ecat; L1 = Pyramid(k).theta1-ecat;

 H2 = Pyramid(k).theta2+ecat; L2 = Pyramid(k).theta2-ecat;

 H3 = Pyramid(k).theta3+ecat; L3 = Pyramid(k).theta3-ecat;

 H4 = Pyramid(k).phi1+ecat; L4 = Pyramid(k).phi1-ecat;

 H5 = Pyramid(k).phi2+ecat; L5 = Pyramid(k).phi2-ecat;

 H6 = Pyramid(k).phi3+ecat; L6 = Pyramid(k).phi3-ecat;

 %Indexing of tolerances

 ind1 = fAng1 <= H1; ind2 = fAng1 >= L1;

 ind3 = fAng2 <= H2; ind4 = fAng2 >= L2;

 ind5 = fAng3 <= H3; ind6 = fAng3 >= L3;

 ind7 = fPhi1 <= H4; ind8 = fPhi1 >= L4;

 ind9 = fPhi2 <= H5; ind10 = fPhi2 >= L5;

 ind11 = fPhi3 <= H6; ind12 = fPhi3 >= L6;

 %Location in Featurelist for match

 Findex = (ind1 & ind2 & ind3 & ind4 & ind5 & ind6 &...

 ind7 & ind8 & ind9 & ind10 & ind11 & ind12);

146

 %New Featurelist Pyramid

 FPyramid(k) = {featurelist.feat(Findex)};

 end

 %Check if F.Pyramid is empty

 L1 = length(FPyramid{1}); L2 = length(FPyramid{2});

 L3 = length(FPyramid{3}); L4 = length(FPyramid{4});

 %Verify if F.Pyramid is valid for use, else use new 4th spot

 if L1 == 0 || L2 == 0 || L3 == 0 || L4 == 0

 else

 list = zeros(12,2);

 n = 0;

 %First Identification Process

 for k = 1:4

 h1 = [FPyramid{k}.HipID1]; %HIP's found

 u = unique(h1); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index1 = h1 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index1); %TAG: number of times value u(m) is found in HIP

 end

 [~,index1] = max(tag); %Location in TAG for max similar entries of u

 h2 = [FPyramid{k}.HipID2]; %HIP's found

 u = unique(h2); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index2 = h2 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index2); %TAG: number of times value u(m) is found in HIP

 end

 [~,index2] = max(tag); %Location in TAG for max similar entries of u

 h3 = [FPyramid{k}.HipID3]; %HIP's found

 u = unique(h3); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index3 = h3 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index3); %TAG: number of times value u(m) is found in HIP

 end

 [~,index3] = max(tag); %Location in TAG for max similar entries of u

 %Update LIST entry and counter

 n = n(end)+1:n(end)+3;

147

 list(n,:) = [Pyramid(k).spot1 h1(index1)

 Pyramid(k).spot2 h2(index2)

 Pyramid(k).spot3 h3(index3)];

 end

 %Final Identification and Output

 for k = 1:N

 %Find all HIP's for spot 'k'

 H = list(list(:,1) == k ,2);

 if ~isempty(H)

 u = unique(H); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index = H == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index); %TAG: number of times value u(m) is found in HIP

 end

 [ntags,index] = max(tag); %Location in TAG for max similar entries of u

 %Input results to Structured output

 starID(k).votes = ntags;

 starID(k).spot = k;

 starID(k).HipID = u(index);

 starID(k).XYZ = spotlist(k).XYZ;

 %[Variable for use in DAVID FOWLER codes]

 starIDMod = starID;

 else

 end

 end

 newPyramid;

 %Identification has completed and results recorded,

 %terminate further need to identify image

 return

 end

 end

 end

end

 function newPyramid

 newspot = (~ismember(ns,starnum));

 newspot = ns(newspot~=0);

% h1 = starID(starnum(1)).HipID; h2 = starID(starnum(2)).HipID;

% h3 = starID(starnum(3)).HipID; h4 = starID(starnum(4)).HipID;

148

 for i = 1:length(newspot)

 I1 = (patsp1 == starnum(1) |...

 patsp1 == starnum(2) |...

 patsp1 == starnum(3) |...

 patsp1 == starnum(4) |...

 patsp1 == newspot(i));

 I2 = (patsp2 == starnum(1) |...

 patsp2 == starnum(2) |...

 patsp2 == starnum(3) |...

 patsp2 == starnum(4) |...

 patsp2 == newspot(i));

 I3 = (patsp3 == starnum(1) |...

 patsp3 == starnum(2) |...

 patsp3 == starnum(3) |...

 patsp3 == starnum(4) |...

 patsp3 == newspot(i));

 newPyr = pattern(I1 & I2 & I3);

 S1 = [newPyr.spot1] == newspot(i);

 S2 = [newPyr.spot2] == newspot(i);

 S3 = [newPyr.spot3] == newspot(i);

 newPyr = newPyr(S1 | S2 | S3);

 for j = 1:6

 H1 = newPyr(j).theta1+ecat; L1 = newPyr(j).theta1-ecat;

 H2 = newPyr(j).theta2+ecat; L2 = newPyr(j).theta2-ecat;

 H3 = newPyr(j).theta3+ecat; L3 = newPyr(j).theta3-ecat;

 H4 = newPyr(j).phi1+ecat; L4 = newPyr(j).phi1-ecat;

 H5 = newPyr(j).phi2+ecat; L5 = newPyr(j).phi2-ecat;

 H6 = newPyr(j).phi3+ecat; L6 = newPyr(j).phi3-ecat;

 %Indexing of tolerances

 ind1 = fAng1 <= H1; ind2 = fAng1 >= L1;

 ind3 = fAng2 <= H2; ind4 = fAng2 >= L2;

 ind5 = fAng3 <= H3; ind6 = fAng3 >= L3;

 ind7 = fPhi1 <= H4; ind8 = fPhi1 >= L4;

 ind9 = fPhi2 <= H5; ind10 = fPhi2 >= L5;

 ind11 = fPhi3 <= H6; ind12 = fPhi3 >= L6;

 %Location in Featurelist for match

 Findex = (ind1 & ind2 & ind3 & ind4 & ind5 & ind6 &...

 ind7 & ind8 & ind9 & ind10 & ind11 & ind12);

 %New Featurelist Pyramid

 FPyramid(j) = {featurelist.feat(Findex)};

 end

 %Check if F.Pyramid is empty

 L1 = length(FPyramid{1}); L2 = length(FPyramid{2});

149

 L3 = length(FPyramid{3}); L4 = length(FPyramid{4});

 L5 = length(FPyramid{5}); L6 = length(FPyramid{6});

 Ltable = [L1 L2 L3 L4 L5 L6];

 %Verify if F.Pyramid is valid for use, else use new 4th spot

 if sum(Ltable) == 0

 else

 h = 0;

 for j = 1:6

 for k = 1:Ltable(j)

 if newPyr(j).spot1 == newspot(i)

 s2 = newPyr(j).spot2;

 s3 = newPyr(j).spot3;

 is1 = FPyramid{j}(k).HipID2 == starID(s2).HipID;

 is2 = FPyramid{j}(k).HipID3 == starID(s3).HipID;

 if sum([is1 is2]) == 2

 h(k) = FPyramid{j}(k).HipID1;

 end

 elseif newPyr(j).spot2 == newspot(i)

 s1 = newPyr(j).spot1;

 s3 = newPyr(j).spot3;

 is1 = FPyramid{j}(k).HipID1 == starID(s1).HipID;

 is2 = FPyramid{j}(k).HipID3 == starID(s3).HipID;

 if sum([is1 is2]) == 2

 h(k) = FPyramid{j}(k).HipID2;

 end

 elseif newPyr(j).spot3 == newspot(i)

 s1 = newPyr(j).spot1;

 s2 = newPyr(j).spot2;

 is1 = FPyramid{j}(k).HipID1 == starID(s1).HipID;

 is2 = FPyramid{j}(k).HipID2 == starID(s2).HipID;

 if sum([is1 is2]) == 2

 h(k) = FPyramid{j}(k).HipID3;

 end

 end

 end

 end

 u = unique(h);

 lu = length(u);

 tag = zeros(lu,1);

150

 for k = 1:lu

 indexnew = h == u(k); %index: all locations of value u(m) in HIP

 tag(k) = sum(indexnew); %TAG: number of times value u(m) is found in HIP

 end

 [ntags,index] = max(tag); %Location in TAG for max similar entries of u

 if u(index) == 0

 ntags = 0;

 end

 %Input results to Structured output

 starID(newspot(i)).votes = ntags;

 starID(newspot(i)).spot = newspot(i);

 starID(newspot(i)).HipID = u(index);

 starID(newspot(i)).XYZ = spotlist([spotlist.spot]==newspot(i)).XYZ;

 %[Variable for use in DAVID FOWLER codes]

 starIDMod = starID;

 end

 end

 end

End of Program.

end

H. Pyramid with Voting Method

function [starID,starIDMod] = getPyramidVote_ID(catalog,featurelist,spotlist,ecat)

%Mortari's Pyramid Algorithm. Creates a list of patterns described by 6

%features each using 3 stars. These patterns are checked against a feature

%list, one pattern at a time, using a 4th star as a verification tool. If

%all 4 spots match to stars in the feature list, then the spots are marked,

%their HIP# recorded, and the output is a table of all spots in the image,

%their location, and only the 4 spots that were recognized will have a HIP

%ID.

%Length of spotlist

N = length(spotlist);

%Initialize structure

starID(N,1) = struct('votes',[],'spot',[],'HipID',[],'XYZ',[]);

%Pad with zeros and with known info

[starID.votes] = deal(0);

[starID.spot] = spotlist.spot;

[starID.HipID] = deal(0);

[starID.XYZ] = spotlist.XYZ;

%Preallocated variable

starIDMod = starID;

Algorithm Model

if N < 4 % Early Failure Detection, requires min. 4 spots in image to proc.

151

else %Process Image and Analyze

Pattern Creation

 %Pattern size: N! / (6 * [N-3]!)

 S = N*(N-1)*(N-2)/6;

 %Initialize structured array

 pattern(S,1) = struct('spot1',[],'spot2',[],'spot3',[],...

 'theta1',[],'theta2',[],'theta3',[],...

 'phi1',[],'phi2',[],'phi3',[]);

 %Pattern Counter

 L = 0;

 %Create Patterns

 for i = 1:N-2

 %Find 1st spot and vector

 spot1 = spotlist(i).spot;

 A = spotlist(i).XYZ;

 for j = i+1:N-1

 %Find 2nd spot and vector

 spot2 = spotlist(j).spot;

 B = spotlist(j).XYZ;

 %Find 1st Feature

 theta1 = acos(dot(A,B));

 for k = j+1:N

 %Find 3rd spot and vector

 spot3 = spotlist(k).spot;

 C = spotlist(k).XYZ;

 %Find 2nd and 3rd Features

 theta2 = acos(dot(A,C)/(norm(A)*norm(C)));

 theta3 = acos(dot(B,C)/(norm(B)*norm(C)));

 %Calculate Interior Angles

 V12 = B-A;

 V13 = C-A;

 V23 = C-B;

 v12 = sqrt(V12(1)^2+V12(2)^2+V12(3)^2);

 v13 = sqrt(V13(1)^2+V13(2)^2+V13(3)^2);

 v23 = sqrt(V23(1)^2+V23(2)^2+V23(3)^2);

 %Interior angles: Features 4->6

 phi1 = acos(dot(V12,V13)/(v12*v13));

 phi2 = acos(dot(V12,V23)/(v12*v23));

 phi3 = acos(dot(V13,V23)/(v13*v23));

 %Sort Features based on smallest theta angle

 if theta1 < theta2 && theta1 < theta3

152

 if theta2 < theta3

 S1 = spot1; S2 = spot2; S3 = spot3;

 T1 = theta1; T2 = theta2; T3 = theta3;

 P1 = phi1; P2 = phi2; P3 = phi3;

 else

 S1 = spot2; S2 = spot1; S3 = spot3;

 T1 = theta1; T2 = theta3; T3 = theta2;

 P1 = phi1; P2 = phi3; P3 = phi2;

 end

 elseif theta2 < theta1 && theta2 < theta3

 if theta1 < theta3

 S1 = spot1; S2 = spot3; S3 = spot2;

 T1 = theta2; T2 = theta1; T3 = theta3;

 P1 = phi2; P2 = phi1; P3 = phi3;

 else

 S1 = spot3; S2 = spot1; S3 = spot2;

 T1 = theta2; T2 = theta3; T3 = theta1;

 P1 = phi2; P2 = phi3; P3 = phi1;

 end

 elseif theta3 < theta1 && theta3 < theta2

 if theta1 < theta2

 S1 = spot2; S2 = spot3; S3 = spot1;

 T1 = theta3; T2 = theta1; T3 = theta2;

 P1 = phi3; P2 = phi1; P3 = phi2;

 else

 S1 = spot3; S2 = spot2; S3 = spot1;

 T1 = theta3; T2 = theta2; T3 = theta1;

 P1 = phi3; P2 = phi2; P3 = phi1;

 end

 end

 %Update Pattern Counter

 L = L + 1;

 %Input Pattern

 pattern(L).spot1 = S1;

 pattern(L).spot2 = S2;

 pattern(L).spot3 = S3;

 pattern(L).theta1 = T1;

 pattern(L).theta2 = T2;

 pattern(L).theta3 = T3;

 pattern(L).phi1 = P1;

 pattern(L).phi2 = P2;

 pattern(L).phi3 = P3;

 end

 end

 end

Pattern Identification

 %Pre-allocate for increased index search speed

 fAng1 = [featurelist.feat.theta1];

153

 fAng2 = [featurelist.feat.theta2];

 fAng3 = [featurelist.feat.theta3];

 fPhi1 = [featurelist.feat.phi1];

 fPhi2 = [featurelist.feat.phi2];

 fPhi3 = [featurelist.feat.phi3];

 patsp1 = [pattern.spot1];

 patsp2 = [pattern.spot2];

 patsp3 = [pattern.spot3];

 %Array of spots

 ns = 1:N;

 %

 for i = 1:S

 %New variables for ease in coding

 starnum(1) = pattern(i).spot1;

 starnum(2) = pattern(i).spot2;

 starnum(3) = pattern(i).spot3;

 %Search for next 'spots' to build future triads

 index = (ns>starnum(1) & ns>starnum(2) & ns>starnum(3));

 star4set = ns(index ~= 0);

 %

 for j = 1:length(star4set)

 %New 4th spot chosen

 starnum(4) = star4set(j);

 %Search for new triads using all 4 spots using indexing

 i1 = (patsp1 == starnum(1) |...

 patsp1 == starnum(2) |...

 patsp1 == starnum(3) |...

 patsp1 == starnum(4));

 i2 = (patsp2 == starnum(1) |...

 patsp2 == starnum(2) |...

 patsp2 == starnum(3) |...

 patsp2 == starnum(4));

 i3 = (patsp3 == starnum(1) |...

 patsp3 == starnum(2) |...

 patsp3 == starnum(3) |...

 patsp3 == starnum(4));

 %Create new Image Pyramid

 Pyramid = pattern(i1&i2&i3);

 %Initialize Featurelist Pyramid

 FPyramid = cell(4,1);

 %Add tolerances and search Featurelist

 for k = 1:4

 %Search tolerance added to image

154

 H1 = Pyramid(k).theta1+ecat; L1 = Pyramid(k).theta1-ecat;

 H2 = Pyramid(k).theta2+ecat; L2 = Pyramid(k).theta2-ecat;

 H3 = Pyramid(k).theta3+ecat; L3 = Pyramid(k).theta3-ecat;

 H4 = Pyramid(k).phi1+ecat; L4 = Pyramid(k).phi1-ecat;

 H5 = Pyramid(k).phi2+ecat; L5 = Pyramid(k).phi2-ecat;

 H6 = Pyramid(k).phi3+ecat; L6 = Pyramid(k).phi3-ecat;

 %Indexing of tolerances

 ind1 = fAng1 <= H1; ind2 = fAng1 >= L1;

 ind3 = fAng2 <= H2; ind4 = fAng2 >= L2;

 ind5 = fAng3 <= H3; ind6 = fAng3 >= L3;

 ind7 = fPhi1 <= H4; ind8 = fPhi1 >= L4;

 ind9 = fPhi2 <= H5; ind10 = fPhi2 >= L5;

 ind11 = fPhi3 <= H6; ind12 = fPhi3 >= L6;

 %Location in Featurelist for match

 Findex = (ind1 & ind2 & ind3 & ind4 & ind5 & ind6 &...

 ind7 & ind8 & ind9 & ind10 & ind11 & ind12);

 %New Featurelist Pyramid

 FPyramid(k) = {featurelist.feat(Findex)};

 end

 %Check if F.Pyramid is empty

 L1 = length(FPyramid{1}); L2 = length(FPyramid{2});

 L3 = length(FPyramid{3}); L4 = length(FPyramid{4});

 %Verify if F.Pyramid is valid for use, else use new 4th spot

 if L1 == 0 || L2 == 0 || L3 == 0 || L4 == 0

 else

 list = zeros(12,2);

 n = 0;

 %First Identification Process

 for k = 1:4

 h1 = [FPyramid{k}.HipID1]; %HIP's found

 u = unique(h1); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index1 = h1 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index1); %TAG: number of times value u(m) is found in HIP

 end

 [~,index1] = max(tag); %Location in TAG for max similar entries of u

 h2 = [FPyramid{k}.HipID2]; %HIP's found

 u = unique(h2); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

155

 for m = 1:lu

 index2 = h2 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index2); %TAG: number of times value u(m) is found in HIP

 end

 [~,index2] = max(tag); %Location in TAG for max similar entries of u

 h3 = [FPyramid{k}.HipID3]; %HIP's found

 u = unique(h3); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index3 = h3 == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index3); %TAG: number of times value u(m) is found in HIP

 end

 [~,index3] = max(tag); %Location in TAG for max similar entries of u

 %Update LIST entry and counter

 n = n(end)+1:n(end)+3;

 list(n,:) = [Pyramid(k).spot1 h1(index1)

 Pyramid(k).spot2 h2(index2)

 Pyramid(k).spot3 h3(index3)];

 end

 %Final Identification and Output

 for k = 1:N

 %Find all HIP's for spot 'k'

 H = list(list(:,1) == k ,2);

 if ~isempty(H)

 u = unique(H); %Unique values of HIP

 lu = length(u); %Number of unique values

 tag = zeros(lu,1); %Pre-allocated matrix for loop speed

 for m = 1:lu

 index = H == u(m); %index: all locations of value u(m) in HIP

 tag(m) = sum(index); %TAG: number of times value u(m) is found in HIP

 end

 [ntags,index] = max(tag); %Location in TAG for max similar entries of u

 %Input results to Structured output

 starID(k).votes = ntags;

 starID(k).spot = k;

 starID(k).HipID = u(index);

 starID(k).XYZ = spotlist(k).XYZ;

 %[Variable for use in DAVID FOWLER codes]

 starIDMod = starID;

 else

 end

156

 end

 SVT = starID;

 Validation

 %Identification has completed and results recorded,

 %terminate further need to identify image

 return

 end

 end

 end

end

 function Validation

Validation Procedure

 starID(N,1) = struct('votes',[],'spot',[],'HipID',[],'XYZ',[]);

 catHip = [catalog.cat.HipID];

 pos = 2;

 neg = 1;

 multID = unique([SVT.HipID]);

 LM = length(multID);

 for i = 1:LM

 index = [SVT.HipID]==multID(i);

 marks = sum(index);

 if marks > 1

 [SVT(index).HipID] = deal(0);

 end

 end

 for i = 1:N

 if SVT(i).HipID ~= 0

 index1 = catHip == SVT(i).HipID;

 XYZ1 = catalog.cat(index1).XYZ;

 xyz1 = spotlist(i).XYZ;

 if isempty(starID(i).votes)

 starID(i).votes = 0;

 end

 for j = 1:N

 if j ~= i

 if SVT(j).HipID ~= 0

 if isempty(starID(j).votes)

 starID(j).votes = 0;

157

 end

 index2 = catHip == SVT(j).HipID;

 XYZ2 = catalog.cat(index2).XYZ;

 xyz2 = spotlist(j).XYZ;

 angle = acos(dot(XYZ1,XYZ2));

 theta = acos(dot(xyz1,xyz2));

 if ~isreal(theta) || theta <= 0

 Lower = 0;

 Upper = ecat;

 else

 Upper = theta+ecat;

 Lower = theta-ecat;

 end

 if Upper >= angle && angle >= Lower

 starID(i).votes = starID(i).votes+pos;

 starID(j).votes = starID(j).votes+pos;

 else

 %starID(i).votes = starID(i).votes-neg;

 starID(j).votes = starID(j).votes-neg;

 end

 else

 %starID(i).votes = starID(i).votes-neg;

 starID(j).votes = starID(j).votes-neg;

 end

 end

 end

 elseif SVT(i).HipID == 0

 if isempty([starID(i).votes])

 starID(i).votes = 0;

 end

 starID(i).votes = starID(i).votes-neg;

 starID(j).votes = starID(j).votes-neg;

 end

 starID(i).spot = i;

 starID(i).HipID = SVT(i).HipID;

 starID(i).XYZ = spotlist(i).XYZ;

 end

 starIDMod = starID;

158

 index = [starID.votes] <= 0;

 [starIDMod(index).HipID] = deal(0);

 end

End of Program.

end

I. Voting Algorithm

function [starID,starIDMod] = Voting_Algorithm(catalog,featurelist,spotlist,pattern,ecat,ns)

Voting Code for 2 stars and 3 stars

Initial Pass Voting - First Stage

IVT(1000000,1) = struct('votes',[],'HipID',[],'spot',[]); %Initial Voting Table

n = length(pattern);

N = length(spotlist);

L = 0;

% dbstop Voting_Algorithm.m at 11

% Strip Angles from feature list only once outside loop

fAng1 = [featurelist.feat.theta1];

if ns == 3

 fAng2 = [featurelist.feat.theta2];

 fAng3 = [featurelist.feat.phi];

end

for i = 1:n %Run based on number of features in 'pattern'

 %featurelist being truncated based on pattern angles and catalog search

 %error tolerance

 high1 = pattern(i).theta1 + ecat; %high and low based on first angle

 low1 = pattern(i).theta1 - ecat;

 if ns == 3 %3-star only truncation

 high2 = pattern(i).theta2 + ecat; %high and low based on second angle

 low2 = pattern(i).theta2 - ecat;

 high3 = pattern(i).phi + ecat; %high and low based on interior angle

 low3 = pattern(i).phi - ecat;

 %Indices that are found to match

 ind1 = fAng1 <= high1;

 ind2 = fAng1 >= low1 ;

 ind3 = fAng2 <= high2;

 ind4 = fAng2 >= low2 ;

 ind5 = fAng3 <= high3;

 ind6 = fAng3 >= low3 ;

 index = (ind1 & ind2 & ind3 & ind4 & ind5 & ind6);

 else %2-star only truncation

 ind1 = fAng1 <= high1;

159

 ind2 = fAng1 >= low1 ;

 index = (ind1 & ind2);

 end

 %featurelist truncated and size recorded

 FLcheck = featurelist.feat(index);

 numMatch = length(FLcheck); %Number of matches between pattern and featurelist

 L = L + 1;

 if numMatch ~= 0 %Found a possible match

 nFound = L - 1 + numMatch;

 iFill = (L:nFound);

 [IVT(iFill).votes] = deal(1);

 [IVT(iFill).HipID] = FLcheck(:).HipID1;

 [IVT(iFill).spot] = deal(pattern(i).spot1);

 if ns ~= 2

 iFill = iFill + numMatch;

 [IVT(iFill).votes] = deal(1);

 [IVT(iFill).HipID] = FLcheck(:).HipID2;

 [IVT(iFill).spot] = deal(pattern(i).spot2);

 iFill = iFill + numMatch;

 [IVT(iFill).votes] = deal(1);

 [IVT(iFill).HipID] = FLcheck(:).HipID3;

 [IVT(iFill).spot] = deal(pattern(i).spot3);

 end

 L = nFound+2*(ns-2)*numMatch;

 else %If no feature match is found

 IVT(L).votes = 0;

 IVT(L).HipID = 0;

 IVT(L).spot = pattern(i).spot1;

 if ns ~= 2

 IVT(L+1).votes = 0;

 IVT(L+1).HipID = 0;

 IVT(L+1).spot = pattern(i).spot2;

 IVT(L+2).votes = 0;

 IVT(L+2).HipID = 0;

 IVT(L+2).spot = pattern(i).spot3;

 end

 L = L + ns-1;

 end

end

160

IVT = IVT(1:L);

Second Pass Voting - Second Stage

SVT(N,1) = struct('votes',[],'spot',[],'HipID',[]);

ivtSpot = [IVT.spot];

ivtHip = [IVT.HipID];

for j = 1:N

 %Index and cut IVT based on 'j'

 iS = ivtSpot == j;

 iH = ivtHip ~= 0;

 index = (iS & iH);

 hip = ivtHip(index);

 if ~isempty(hip)

 uhip = unique(hip);

 s = size(uhip,2);

 votes = zeros(s,1);

 for i = 1:s

 votes(i) = sum(hip == uhip(i));

 end

 if sum(votes==max(votes)) > 1

 SVT(j).votes = 0;

 SVT(j).spot = j;

 SVT(j).HipID = 0;

 else

 [vote,index] = max(votes);

 %Secondary Voting matrix

 SVT(j).votes = vote;

 SVT(j).spot = j;

 SVT(j).HipID = uhip(index);

 end

 else

 SVT(j).votes = 0;

 SVT(j).spot = j;

 SVT(j).HipID = 0;

 end

end

Validation Procedure - Third Stage

161

starID(N,1) = struct('votes',[],'spot',[],'HipID',[],'XYZ',[]);

catHip = [catalog.cat.HipID];

pos = 1;

neg = 1;

multID = unique([SVT.HipID]);

LM = length(multID);

for i = 1:LM

 index = [SVT.HipID]==multID(i);

 marks = sum(index);

 if marks > 1

 [SVT(index).HipID] = deal(0);

 end

end

for i = 1:N

 if SVT(i).HipID ~= 0

 index1 = catHip == SVT(i).HipID;

 XYZ1 = catalog.cat(index1).XYZ;

 xyz1 = spotlist(i).XYZ;

 if isempty(starID(i).votes)

 starID(i).votes = 0;

 end

 for j = 1:N

 if j ~= i

 if SVT(j).HipID ~= 0

 if isempty(starID(j).votes)

 starID(j).votes = 0;

 end

 index2 = catHip == SVT(j).HipID;

 XYZ2 = catalog.cat(index2).XYZ;

 xyz2 = spotlist(j).XYZ;

 angle = acos(dot(XYZ1,XYZ2));

 theta = acos(dot(xyz1,xyz2));

 if ~isreal(theta) || theta <= 0

 Lower = 0;

 Upper = ecat;

 else

 Upper = theta+ecat;

 Lower = theta-ecat;

 end

 if Upper >= angle && angle >= Lower

162

 starID(i).votes = starID(i).votes+pos;

 starID(j).votes = starID(j).votes+pos;

 else

 %starID(i).votes = starID(i).votes-neg;

 starID(j).votes = starID(j).votes-neg;

 end

 else

 %starID(i).votes = starID(i).votes-neg;

 starID(j).votes = starID(j).votes-neg;

 end

 end

 end

 elseif SVT(i).HipID == 0

 if isempty([starID(i).votes])

 starID(i).votes = 0;

 end

 starID(i).votes = starID(i).votes-neg;

 starID(j).votes = starID(j).votes-neg;

 end

 starID(i).spot = i;

 starID(i).HipID = SVT(i).HipID;

 starID(i).XYZ = spotlist(i).XYZ;

end

starIDMod = starID;

index = [starID.votes] <= 0;

[starIDMod(index).HipID] = deal(0);

end

163

APPENDIX B

ADDITIONAL FIGURES

 Additional figures that were not shown in the main body of the text are provided here to further

illustrate the results obtained from simulation and experimental testing.

I. Simulations

1. Magnitude 3 Threshold

Figure B.1 Location of camera view point for 100 simulated images with approximate FOV area for

magnitude 3 star fields in Miller cylindrical projection

164

Figure B.2 Solution failures for 3 unacceptable simulated ID algorithms at magnitude 3 as a function

of catalog tolerance

165

Figure B.3 Solution failures for 5 acceptable simulated algorithms at magnitude 3 as a function of

catalog tolerance

166

Figure B.4 Image solution failures of all simulated algorithms at magnitude 3 as a function of catalog

tolerance

Figure B.5 Spot to star matching failures of all simulated algorithms at magnitude 3 as a function of

catalog tolerance

167

Figure B.6 Average empty sets of all simulated algorithms at magnitude 3 as a function of catalog

tolerance

168

Figure B.7 Solution failures of 3 unacceptable simulated algorithms at magnitude 3 as a function of

centroiding

169

Figure B.8 Solution failures of 5 acceptable simulated algorithms at magnitude 3 as a function of

centroiding

170

Figure B.9 Image solution failure of all simulated algorithms at magnitude 3 as a function of

centroiding

Figure B.10 Average failed matches of all simulated algorithms at magnitude 3 as a function of

centroiding

171

Figure B.11 Average empty sets of all simulated algorithms at magnitude 3 as a function of

centroiding

Figure B.12 3-D image solution failure of simulated Two Star method as functions of catalog

tolerance and centroiding

172

Figure B.13 3-D image match failure of simulated Two Star method as functions of catalog tolerance

and centroiding

Figure B.14 3-D image empty sets of simulated Two Star method as functions of catalog tolerance

and centroiding

173

Figure B.15 3-D image solution failure of simulated Liebe method as functions of catalog tolerance

and centroiding

Figure B.16 3-D image match failure of simulated Liebe method as functions of catalog tolerance and

centroiding

174

Figure B.17 3-D image empty set of simulated Liebe method as functions of catalog tolerance and

centroiding

Figure B.18 3-D image solution failure of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding

175

Figure B.19 3-D image match failure of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding

Figure B.20 3-D image empty set of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding

176

Figure B.21 3-D image solution failure of simulated Brätt method as functions of catalog tolerance

and centroiding

Figure B.22 3-D image match failure of simulated Brätt method as functions of catalog tolerance and

centroiding

177

Figure B.23 3-D image empty set of simulated Brätt method as functions of catalog tolerance and

centroiding

Figure B.24 3-D image solution failure of simulated Constrained Pyramid method as functions of

catalog tolerance and centroiding

178

Figure B.25 3-D image match failure of simulated Constrained Pyarmid method as functions of

catalog tolerance and centroiding

Figure B.26 3-D image empty set of simulated Constrained Pyarmid method as functions of catalog

tolerance and centroiding

179

Figure B.27 3-D image solution failure of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding

Figure B.28 3-D image match failure of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding

180

Figure B.29 3-D image empty set of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding

Figure B.30 3-D image solution failure of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding

181

Figure B.31 3-D image match failure of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding

Figure B.32 3-D image empty set of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding

182

Figure B.33 3-D image solution failure of simulated Pyramid with Voting method as functions of

catalog tolerance and centroiding

Figure B.34 3-D image match failure of simulated Pyramid with Voting method as functions of

catalog tolerance and centroiding

183

Figure B.35 3-D image empty set of simulated Pyramid with Voting method as functions of catalog

tolerance and centroiding

2. Magnitude 3.5 Threshold

Figure B.36 3-D image solution failure of simulated Two Star method as functions of catalog

tolerance and centroiding

184

Figure B.37 3-D image match failure of simulated Two Star method as functions of catalog tolerance

and centroiding

Figure B.38 3-D image empty set of simulated Two Star method as functions of catalog tolerance and

centroiding

185

Figure B.39 3-D image solution failure of simulated Liebe method as functions of catalog tolerance

and centroiding

Figure B.40 3-D image match failure of simulated Liebe method as functions of catalog tolerance and

centroiding

186

Figure B.41 3-D image empty set of simulated Liebe method as functions of catalog tolerance and

centroiding

Figure B.42 3-D image solution failure of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding

187

Figure B.43 3-D image match failure of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding

Figure B.44 3-D image empty set of simulated Liebe with Voting method as functions of catalog

tolerance and centroiding

188

Figure B.45 3-D image solution failure of simulated Brätt method as functions of catalog tolerance

and centroiding

Figure B.46 3-D image match failure of simulated Brätt method as functions of catalog tolerance and

centroiding

189

Figure B.47 3-D image empty set of simulated Brätt method as functions of catalog tolerance and

centroiding

Figure B.48 3-D image solution failure of simulated Constrained Pyramid method as functions of

catalog tolerance and centroiding

190

Figure B.49 3-D image match failure of simulated Constrained Pyramid method as functions of

catalog tolerance and centroiding

Figure B.50 3-D image empty set of simulated Constrained Pyramid method as functions of catalog

tolerance and centroiding

191

Figure B.51 3-D image solution failure of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding

Figure B.52 3-D image match failure of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding

192

Figure B.53 3-D image empty set of simulated Comprehensive Pyramid method as functions of

catalog tolerance and centroiding

Figure B.54 3-D image solution failure of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding

193

Figure B.55 3-D image match failure of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding

Figure B.56 3-D image empty set of simulated Modified Pyramid method as functions of catalog

tolerance and centroiding

194

Figure B.57 3-D image solution failure of simulated Pyramid with Voting method as functions of

catalog tolerance and centroiding

Figure B.58 3-D image match failure of simulated Pyramid with Voting method as functions of

catalog tolerance and centroiding

195

Figure B.59 3-D image empty set of simulated Pyramid with Voting method as functions of catalog

tolerance and centroiding

II. Additional Experimental Data Figures

1. Magnitude 3 Threshold – OCT

Figure B.60 Oct data at mag. 3 showing average false matches for all algorithms

196

Figure B.61 Oct data at mag. 3 showing average solution failures for all algorithms

Figure B.62 Oct data at mag. 3 showing average empty set for all algorithms

197

2. Magnitude 3.5 Threshold - OCT

Figure B.63 Oct data at mag. 3.5 showing average false matches for all algorithms

Figure B.64 Oct data at mag. 3.5 showing average false solutions for all algorithms

198

Figure B.65 Oct data at mag. 3.5 showing average empty set for all algorithms

3. Magnitude 4 Threshold - OCT

Figure B.66 Oct data at mag. 4 showing average false matches for all algorithms

199

Figure B.67 Oct data at mag. 4 showing average false solutions for all algorithms

Figure B.68 Oct data at mag. 4 showing average empty set for all algorithms

200

4. Magnitude 3 Threshold - NOV

Figure B.69 Nov data at mag. 3 showing average false matches for all algorithms

Figure B.70 Nov data at mag. 3 showing average false solutions for all algorithms

201

Figure B.71 Nov data at mag. 3 showing average empty set for all algorithms

5. Magnitude 3.5 Threshold - NOV

Figure B.72 Nov data at mag. 3.5 showing average false matches for all algorithms

202

Figure B.73 Nov data at mag. 3.5 showing average false solutions for all algorithms

Figure B.74 Nov data at mag. 3.5 showing average empty set for all algorithms

203

6. Magnitude 4 Threshold - NOV

Figure B.75 Nov data at mag. 4 showing average false matches for all algorithms

Figure B.76 Nov data at mag. 4 showing average false solutions for all algorithms

204

Figure B.77 Nov data at mag. 4 showing average empty set for all algorithms

	Utah State University
	DigitalCommons@USU
	1-1-2013

	Analysis of Star Identification Algorithms due to Uncompensated Spatial Distortion
	Steven Paul Brätt
	Recommended Citation

