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The laser reference sensor is the central instrument in the Ice, Cloud, and land Elevation Satellite 2 laser pointing

knowledge system, simultaneously observing stars and the altimetry laser in a single instrument coordinate frame.

The star observations are relatively sparse, with a predicted brightness cutoff near visual magnitude 5, and their

density varies significantly across the sky. There are star gaps of up to approximately 200 s, and areas of the sky with

20 simultaneously observable stars. The star observations are augmented with observations from two spacecraft star

trackers using an alignment filter. The filter tracks the motion of the laser reference sensor relative to the spacecraft.

MonteCarlo simulation is used to characterize the effects of variousmagnitude cutoffs, types of alignment variations,

and regions of the sky on alignment tracking and overall pointing knowledge performance. Multiple model adaptive

estimation is used to map alignment process noise filter tuning with respect to the input parameters. The results

include pointing knowledge uncertainty predictions over an input parameter space of three star brightness cutoffs,

two types of alignment variations, and three alignment variation amplitudes. The results also map pointing

uncertainty to regions of the sky and individual stars.

Nomenclature

AATLAS
i = true reference platform attitude

Ab
i = estimated reference platform and body frame attitude

ALRS
ATLAS = constant reference alignment

ALRS
i = true laser reference sensor attitude

ÂLRS
i = estimated laser reference sensor attitude

a = attitude error rotation vector, rad
b = gyro rate bias vector, rad∕s
aLRS = true alignment rotation vector, rad
âLRS = estimated alignment rotation vector, rad
e = alignment error rotation vector, rad
H = sensitivity matrix
h�u� = h, v coordinates of a star unit vector (star

observation model)
K = Kalman gain matrix
P = state covariance matrix
Q = process noise covariance matrix
R = measurement noise covariance matrix
R�a� = state transition submatrix
S�a� = state transition submatrix
uobs = simulated star observation unit vector
uref = reference star catalog unit vector in the celestial frame
x = state vector
αnode = right ascension offset applied to star catalog unit

vectors, rad
Δy = star observation residual in h, v coordinates
η�t� = zero-mean Gaussian noise process
ω�t� = angular rate vector, rad∕s
ωg�t� = gyro output angular rate vector, rad∕s
Φ = state transition matrix
σΔb = scaling factor in the random walk of simulated rate

observations

I. Introduction

T HE Ice, Cloud, and land Elevation Satellite 2 (ICESat-2)
pointing knowledge system centers on the laser reference sensor

(LRS) that simultaneously observes stars and the altimetry lasers in
the LRS coordinate frame [1–4]. Ideally, the LRS attitude and, by
extension, the pointing of the lasers in the celestial frame are
determined by the star observations. In practice, estimation of the
LRS attitude from imperfect observations is the key factor in laser
pointing knowledge.
The ICESat-2 LRS is very different from the ICESat-1 LRS [1].

The ICESat-1 LRSwas a relatively simple instrument and dependent
on collocated external components (gyro unit, instrument star tracker,
laser profiler array, and collimated reference source). The ICESat-2
LRS is more sophisticated and intended to be independent. In
particular, it is intended to provide continuous observations of a
relatively large number of stars, comparable to the current generation
of star trackers, except when blinded by the Sun. Ideally, it should be
sensitive enough to track stars at least as dim as approximately visual
magnitude 6, resulting in 5000–6000 trackable stars with a fairly
dense and uniform distribution across the sky.
During testing of LRS hardware components, problems were

found with the originally specified detector. The replacement
detector results in a lower sensitivity of approximately visual
magnitude 5, with 1000–1500 trackable stars. Pointing knowledge
requirements are unchanged, but the LRS star observations are
relatively sparse, defined here as meaning the number of trackable
stars goes to zero in some regions of the sky (regardless of sun, moon,
and Earth effects).
The objective of this paper is to predict pointing knowledge

performancewhere the observations are sparse and the requirement is
difficult (better than 0.4 arcsec 1σ). We are not aware of a similar
study in the open literature, but sparse LRS star observations increase
the importance of tracking the relative alignments of the attitude
sensors, which is a significant topic in the literature. The pointing
knowledge processor used here builds on alignment filtering work
published over the last 15 years [5–10]. Variation of the LRS
alignment, relative to the other attitude sensors, is referred to here as
LRS motion, and the difference between the true and estimated
motion is referred to as LRS alignment tracking error.
A contribution of this paper is the way Monte Carlo simulation is

used to estimate LRS alignment tracking errors and overall pointing
knowledge performance for a range of LRS sensitivities and LRS
motions. Monte Carlo simulation is demonstrated to be an effective
method for mapping problem regions of the sky, where tracking
errors increase due to sparse observations.Another contribution is the
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use of multiple-model adaptive estimation to find LRS alignment
state process noise estimates as a function of both LRS sensitivity and
motion.

II. Background and Definitions

ICESat-2 is scheduled for launch in 2016 and intended to operate
for at least three years. The objective is laser altimetry using the
AdvancedTopographic LaserAltimeter System (ATLAS) tomeasure
ice sheet mass elevation, sea ice freeboard, land topography, and
vegetation characteristics. Highly accurate measurements of the
surface elevation at each laser footprint are required [11–14]. The
location of a footprint and its associated elevation are obtained by
combining the geocentric position vector of ATLAS, the laser
pointing vector, and laser pulse time-of-flight measurements. The
accuracy requirement for surface elevation is equivalent to a laser
pointing knowledge accuracy of 1.5 arcsec 1σ for each of the 6
laser beams.
Figure 1 shows ATLAS and its pointing knowledge sensors. The

LRS is mounted vertically through the ATLAS optical bench and
consists of two imagers joined back-to-back, with a star tracker
pointed at the zenith and a laser tracker pointed at the nadir observing
the altimetry laser beams. The LRS star tracker sunshade is
prominent in Fig. 1. Because the LRS is intended to operate
independently, it is not collocated with the gyro unit and two
spacecraft star trackers (SST), which are mounted on a small
platform, referred to as the ATLAS reference platform and defining
the ATLAS reference frame in Fig. 1.
Structurally, the gyro unit is distant from the LRS. The LRS is

attached to the ATLAS optical bench by three mounting brackets,
which are expected to flex. The gyro unit is on the reference platform,
which is attached to the ATLAS optical bench by its own three
mounting brackets, and the ATLAS optical bench itself is flexing
between theLRS and reference platform, at least to somedegree. This
structural separation between the gyro unit and LRS is of first-order
significance, as demonstrated by contrasting the situation with
ICESat-1. On ICESat-1, the gyro unit and LRS were collocated. The
alignment between their instrument frames was relatively stable and,
in practice, gyro telemetry could be used to propagate an adequate
LRS attitude estimate over orbital time scales [15–19]. We consider
this situation, based on colocation of a science instrument and gyro
unit, to be normal and what is generally expected.
In the ICESat-2 case, for pointing knowledge purposes the over-

all situation can be approximated as two rigid bodies, the LRS
and reference platform, which are constrained by the intervening
mounting brackets and optical bench to have some degree of
alignment stability. The reference platform is designed specifically
for thermal isolation and stability. As a first-order rigid body model,
internal alignments within the reference platform (between the gyro
unit and SSTs) are approximated as constant. The objective is to
simultaneously track the reference platform attitude and LRS
alignment: in otherwords, the rotations from the celestial frame to the
reference platform frame, and from the reference platform frame to
the LRS frame.
The LRS star tracker has a 12° × 12° field of view and outputs

centroid and brightness measurements at 10 Hz. It can track up to 30
stars simultaneously, but with its sensitivity limitations it normally
tracks on the order of 5 stars. The SSTs output estimated attitude
quaternions at 10 Hz. The gyro unit has four sense-axes arranged in a
pyramid geometry and outputs angular increments about each sense-
axis at 100Hz. Flight telemetry samples the gyro unit output at 50Hz.
Attitude and alignment rotations are represented by rotation

matrices A or their quaternion equivalents q�A�. Small rotations are
represented by rotation vectors a or their equivalents A�a� or q�a�,
where a rotation vector is defined as an Euler axis and angle a � ϕe;
jej � 1 [20]. For quaternions,⊗ is themultiplication operator and q�

is the conjugate of q. All quaternions are normalized q � q∕jqj to
unit length. A quaternion can be represented as q � � qT q4 �T with
a three component vector part q � �q1 q2 q3 �T and a scalar
component q4. The cross-product matrix �a×� is defined by �a×�b �
a × b.

III. Reference Platform Attitude Tracking

The performance results presented here are based on Monte Carlo
simulation of the first-order rigid body model, in which pointing
knowledge involves three objects: reference platform attitude, LRS
alignment, and laser vectors in the LRS frame. The first-order model
represents the most significant performance factors and allows
secondary complexities to be represented as internal alignment
uncertainties and higher-order corrections.
At each point in simulated time there are two reference platform

attitudes and two LRS alignments: the truth from the simulation, and
an estimate from processing simulated sensor observations. The term
“tracking” refers here to the difference between estimated and true
values, represented by a tracking error time series and rms tracking
error statistics. The focus of the results section is attitude and
alignment tracking, with the assumption that in practice the laser
vector observations are well calibrated and pointing knowledge is a
function of attitude and alignment tracking performance.

A. Simulation Truth

The truth time series is referred to as SIMV9 (Simulation Version
9) and serves as a baseline throughout the ICESat-2 orbit, pointing,
and geolocation knowledge group. SIMV9 is designed to provide a
realistic representation of normal pointing, ocean scans, around the
world scans, target scans, and the transitions between. It consists of a
time series of true attitudes AATLAS

i �tk� at 1 s intervals over 1 day.
Angular rates ωk are derived from AATLAS

i �tk� and both are
resampled to 0.1 s intervals to match the fundamental frequency of
the star tracker observations and the overall tracking problem.
The ωk are tested to ensure that they adequately represent the true

rates and ideal gyro unit observations. They should provide the best
practical attitude tracking possible and a lower-bound on numerical
errors in state propagation within the processor. Attitude tracking
using ideal gyro observations alone propagates the time series of
estimatesAb

i �tk� forward from the initialAb
i ≡AATLAS

i �t0� usingωk.
If significant differences from AATLAS

i �tk� accumulate in Ab
i �tk�,

then the ωk are not a valid representation of the true rates and
ideal gyro observations. The attitude change from tk to tk�1
is approximated by the rotation vector ak � �tk�1 − tk�ωk and
equivalent quaternion q�ak� � �aTk∕2 1 �T . The estimated attitude
at tk�1 is q�Ab

i �k�1 � q�ak� ⊗ �Ab
i �k. The estimates are calculated

sequentially and the error at each step is represented by the
quaternion qerr � q�Ab

i � ⊗ q�AATLAS
i �� and equivalent rotation

vector aerr � 2�qerr;1 qerr;2 qerr;3 �T.
Figures 2–4 show ωk and abs�aerr� for the resampled 10 Hz

SIMV9data. In Fig. 2 the two ocean scanmaneuvers (A andC), target
scans (B), and around the world scan (D) are apparent in the roll rate
time series. Themaneuver sequence is not representative of actual on-
orbit operations but is convenient for studying scans and transitions.

Fig. 1 ATLAS, the LRS, and the reference platform.
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Attitude tracking errors are on the order of 3 × 10−3 arcsec∕day or
less with rms values of 9 × 10−5 arcsec in roll, 2 × 10−3 arcsec in
pitch, and 6 × 10−5 arcsec in yaw. This indicates that the ωk values
are an adequate representation of the ideal gyro unit observations, and
that the lower-bound on attitude tracking errors is much smaller than
the errors from realistic gyro observations, which are more than four
orders of magnitude larger at approximately 5 arcsec∕h.
The results section focuses on roll tracking performance, and is

representative of pitch tracking performance. Roll motion is
equivalent to cross-track pointing and of first importance for laser
spot geolocation and ICESat-2 science. The rate and acceleration
variations are highest in roll as the calibration and target scans sweep
the lasers across the ground track, particularly during target scans that
are effectively pure roll (Figs. 2–4). Peak accelerationmagnitudes are
approximately 140 arcsec∕s2 as shown in Fig. 5.
Two test cases used below for attitude tracking performance

analysis are taken from the ocean scan shown in the left plot of
Fig. 5. The baseline case with nadir pointing angular rates and
small angular accelerations is from 12,000 to 12,065 s, just before
the first acceleration peak. An upper-bound case with peak angular
accelerations covers the first acceleration peak from 12,135 to
12,220 s.

B. States and Observations

Simulated sensor observations are generated from the truth time
series, including the effects of LRS motion, deterministic errors, and
noise. The simulated sensor observations are then processed as
artificial flight telemetry. Monte Carlo simulation runs for different
LRS sensitivities and different regions of the sky provide information
about the observation characteristics and the relationship between
sensitivity and tracking performance. The results from multiple
simulation runs are combined to characterize attitude and alignment
tracking performance.
The processor is a Kalman filter that estimates reference platform

attitude, gyro rate bias, and LRS alignment and is referred to here as
an alignment filter [5–7].Alignment filtering simultaneously predicts
the measurements from all three star trackers (the LRS star tracker
and the two SSTs). The sparse LRS observations are effectively
combined with the observations from the other two trackers. The
measurement residuals are used to update the filter states, which
represent the body frame attitude and time-varying corrections to the
LRS reference alignment. The SSTs are tied to the body frame by
constant reference alignments. The combined states represent the
attitudes of all three trackers. This type of alignment filtering is
applicable to any configuration of vector sensors; if the vector

Fig. 2 Roll a) ωk and b) abs�aerr�.

Fig. 3 Pitch a) ωk and b) abs�aerr�.

Fig. 4 Yaw a) ωk and b) abs�aerr�.
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observations can be predicted, then the sensor alignment estimates
can be updated.
There are two ATLAS reference platform attitudes: the simula-

tion truth AATLAS
i �t�, and an estimate Ab

i �t�. Any expression that
includesAATLAS

i �t� refers to simulation truth, and any expression that
includes Ab

i �t� refers to estimated values. For example, ALRS
i �t� �

A�aLRS�t��ALRS
ATLASA

ATLAS
i refers to the true LRS attitude and

alignment, whereas ALRS
i �t� � A�aLRS�t��ALRS

b Ab
i �t� refers to their

estimated values.
The true SST attitudes are modeled as the product of a constant

reference alignment ASST
ATLAS and the reference platform attitude

AATLAS
i �t�:

ASST1
i �t� � ASST1

ATLASA
ATLAS
i �t� (1)

ASST2
i �t� � ASST2

ATLASA
ATLAS
i �t� (2)

Time-varying corrections to the reference alignmentsASST
ATLAS are not

modeled or estimated, and the SST coordinate frames are effectively
identified with the reference platform frame. A time-varying rotation
vector aLRS�t� representing small alignment corrections is included
in the attitude models for the LRS:

ALRS
i �t� � A�aLRS�t��ALRS

ATLASA
ATLAS
i �t� (3)

where ALRS
ATLAS is the LRS reference alignment. The state vector is

x�t� � �a�t�T b�t�T aLRS�t�T �T (4)

wherea�t� is the attitude error rotation vector and b�t� is the rate bias.
These states are estimated sequentially using an alignment filter
based on the standard attitude filter, referred to by [20] as the
Multiplicative Extended Kalman Filter. The description here follows
[6,7,20,21].
The filter performs unconstrained estimation of the rotation vector

a�t� during each measurement update phase while maintaining the
overall body frame attitude estimate in the unit-norm reference
attitude quaternion qb�t� with Ab

i �t� � A�qb�t��. The true attitude
qATLAS�t� is modeled as qATLAS�t� � q�a�t�� ⊗ qb�t� [20]. The
measurement update phase assigns a finite value â� to â�t�while the
estimated quaternion retains its preupdate value qb−. The update
information is moved from â� to a postupdate reference qb;�, and
â�t� is reset to zero so that q�â�� ⊗ qb;− � q�0� ⊗ qb;�.
The covariance matrix P is given by

P9×9 � Ef�x − x̂��x − x̂�Tg �

2
4 Pa Pab
Pab Pb

PLRS

3
5 (5)

whereP is partitioned into 3 × 3 attitudePa, ratePb, correlation Pab,
and alignment PLRS submatrices. In the continuous-time linearized
state equation given by

2
4 δ _a

δ _b
δ _aLRS

3
5�

2
4−�ωref×� I3×3

03×3 03×3
03×3

3
5
2
4 δa

δb
δaLRS

3
5� I9×9

2
4 ηarw

ηrrw
ηLRS

3
5

(6)

the rate bias δb and alignment error δaLRS are driven by process
noise alone, with EfηarwηTarwg � σ2arwI, EfηrrwηTrrwg � σ2rrwI, and
EfηLRSηTLRSg � σ2LRSI. The discrete-time process noise matrix for a
propagation interval Δt � tk�1 − tk is given by

Qk�

2
4�σ

2
awn�Δtσ2arw��Δt3∕3�σ2rrw�I �Δt2∕2�σ2rrwI

�Δt2∕2�σ2rrwI Δtσ2rrwI
Δtσ2LRSI

3
5

(7)

The LRS alignment process noise σLRS is estimated using multiple
model adaptive estimation as described in Sec. IV.B.

C. Simulated Rate Observations and State Propagation

Simulated gyro unit rate observations are generated by adding
measurement errors to the ideal rate time series ωk, producing an
observed rate time series ωg;k. Gyro noise and rate bias are modeled
by short-term variations and long-term trends in the rate error
ωg;k − ωk. A basic model of the errors is ωg;k � ωk � bk � ηawn,
where ηawn is short-time-scale angular white noise in the gyro out-
put with EfηawnηTawng � σ2awnI. Random values Δbk are added
sequentially to the rate bias at each time step bk � bk−1 � Δbk with
EfΔbkΔbTk g � σ2ΔbI. The parameter σΔb characterizes the random
walk of bk.
Gyro unit observation uncertainties are commonly characterized

using three parameters: angular white noise σawn, angular random
walk variance σarw, and rate randomwalk variance σrrw. Uncertainties
for the ICESat-2 gyro unit are specified as σawn � 1.454 ×
10−8 rad∕Hz1∕2, σarw � 7.272× 10−10 rad∕s1∕2, and σrrw � 2.424 ×
10−11 rad∕s3∕2. The angular parameters σawn and σarw are associated
with short time scales and noise, and the rate parameter σrrw is
associated with longer time scales and rate bias. The growth in rate
uncertainty is characterized by

��
t
p

σrrw and this value can be used as
the basis for a model of Δbk, resulting in a parameter estimate of
σΔb � 7.6 × 10−12 rad∕s. However, σrrw does not represent all of the
factors involved in overall bias stability.
Another specified characteristic of the gyro unit is a bias stability of

approximately 5 arcsec∕h 1σ. Monte Carlo simulation is used to find
the σΔb that results in an attitude tracking error of approximately
5 arcsec 1σ after 1 h of propagation. A set ofm � 12 hypothetical σΔb
values is tested by using each value for a set of n � 90 1 h attitude
propagation runs, resulting in mn � 1080 total runs. The random
walk of the rate bias is unique in each run, and the final attitude errors
of all 90 runs for a given σΔb value represent its error distribution. The
σΔb whose error distribution sigma is closest to 5 arcsec is the best
parameter estimate. Figure 6 shows the error sigmas for the 12σΔb
values, and demonstrates that σΔb � 8 × 10−11 rad∕s results in an
attitude tracking error of 5 arcsec∕h 1σ.

Fig. 5 Roll acceleration magnitudes during a) ocean scan A and b) target scan B from Fig. 2.
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For filter state propagation, the gyro unit outputs time-tagged
angular increments that are used to compute the rate observationsωg.
The filter models the rate as ω � ωg � b� ηarw, where db∕dt �
ηrrw. The state propagation rotation vector is a � Δt�ωg � b�,
where the time interval is short enough that ωg is approximately
constant. Attitude propagation when the assumption of approx-
imately constantω is not valid is discussed in [22]. The discrete-time
state transition matrix is given by

Φk �

2
4R�a� ΔtS�a�

03×3 I3×3
I3×3

3
5 (8)

where R�a� � I cos a − �a×� sin a∕a� aaT�1 − cos a�∕a2 and
S�a��I sina∕a− �a×��1−cosa�∕a2�aaT�a−sina�∕a3. The
propagated attitude estimate and state are qb;k�1 � q�ap� ⊗ qb;k
and xk�1 � xk, and the propagated covariance is Pk�1 �
ΦkPkΦT

k �Qk.

D. Simulated Attitude Observations and Attitude Updates

The effective observations output by the SSTs are quaternions and
are used to directly correct the estimated attitude state. Attitude
tracking performance depends on the error characteristics of these
quaternion observations over all but the shortest time scales, where
rate and propagation errors dominate. The attitude observation errors
aremodeled here aswhite noise in the quaternions. Simulated attitude
observations and attitude updates are discussed here for SST1, and
the SST2 case is identical.
Simulated observations for SST1 are given by qSST1i � q�ηSST� ⊗

qSST1ATLAS ⊗ qATLASi , where ηSST is a rotation vector representing

attitude observation uncertainties R � EfηSSTηTSSTg � diag�� σ2SSTx
σ2SSTy σ2SSTz�� and the constant reference alignment for SST1

is qSST1ATLAS. The observation uncertainties are specified by the manu-
facturer as σSSTx � σSSTy � 1.5 arcsec and σSST2 � 12.2 arcsec.

The filter prediction of the SST1 attitude is qSST1ATLAS ⊗ qbi , and
the observation residual rotation vector Δy is given by
�ΔyT∕2 q4 �T � qSST1i ⊗ �qSST1ATLAS ⊗ qbi ��. Attitude updates are
performed using the observation sensitivity H � �ASST1

ATLAS 0 0 �,
Kalman gain K � PHT�HPHT �R�−1, estimated state correction
Δx � �ΔaT ΔbT ΔaTLRS �T � KΔy, and covariance update
P� � �I −KH�P−. The gyro rate bias update is b� � b− � Δb
and the updated attitude estimate is qb� � q�Δa� ⊗ qb−.
Two angular acceleration cases are used to characterize attitude

tracking errors: a baseline case with nadir pointing angular rates and
small angular accelerations, and an upper-bound ocean and target
scan case with peak accelerations. For each of the two acceleration
cases, five uncertainty scaling factors, 0.33, 0.5, 1, 2, and 3, are
applied to σSST. These 10 cases are used to characterize the sensitivity
of attitude tracking error to both acceleration and observation noise.
Fifty Monte Carlo simulation runs were performed for each of the
10 cases.
Roll tracking rms error values are given in the results section.

Figure 7 shows 0.05, 0.25, 0.5, 0.75, and 0.95 quantile breakdowns of
the roll tracking error magnitudes. The central dots are the 0.5
quantiles or median values. The left plot is for the nadir pointing case
with small angular accelerations, and the right plot is for the peak
acceleration case.
Figure 7 shows that, for the baseline observation noise and both

acceleration cases, the median roll tracking error magnitude is
approximately 0.05 arcsec. Attitude tracking error magnitudes are
similar in both the nadir pointing and peak acceleration cases. With
ATLAS reference platform attitude tracking errors on the order of
0.05 arcsec, LRS star observations can be predicted accurately if LRS
alignment tracking is also good.

IV. LRS Alignment Tracking

All information for LRS alignment tracking comes from star
observations, and they are a primary source of alignment tracking
errors, along with filter and numerical errors. The most significant
issue is the quantity and distribution of observations across the sky: in
other words, the sensitivity of the LRS and its ability to track dim
stars. If only bright stars are acquired, there are periods without star
observations during which the filter does not receive alignment
updates and does not track the LRS alignment.
LRS sensitivity is characterized by the maximum observable

instrument magnitude. Instrument and astronomical magnitudes m
are unitless ratios defined by the equation

m −mref � −2.5 log10�i∕iref� (9)

where mref and iref are reference magnitudes and intensity counts.
The predicted instrument magnitude cutoff for the LRS is 5.0 and is
referred to here as LRS sensitivity 5.0. The three cases studied in this
paper are LRS sensitivities 4.8 (low sensitivity), 5.0 (predicted
sensitivity), and 5.2 (high sensitivity).
Another significant issue is deterministic errors and noise in

the star observations. Deterministic errors such as distortion are
corrected within the processor [2,23,24]. The effects of noise are

Fig. 6 Attitude tracking error per hour of propagation for various σΔb
values.

Fig. 7 Roll tracking error magnitude distributions for the a) nadir pointing case and b) peak acceleration case.
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reduced by observing more stars n, with uncertainty generally scal-
ing by 1∕

���
n
p

. Low sensitivity reduces n and results in larger
uncertainties.
There are also issueswith individual stars and theirmission catalog

records. Normal stars have unbiased observations and catalog
records. The exceptions are referred to here as bad stars and become
more important as sensitivity decreases [23,25,26]. When the
sensitivity is low, there are more periods when only a single star is
being tracked. This makes the filter more sensitive to bad stars,
because there are fewer normal stars to counteract their effects on
filter updates.
The characteristics of the alignment variations can be classed as

another source of alignment tracking errors. If the variations are
especially complex, it is natural to expect tracking errors to be larger.
Monte Carlo simulations are performed for two cases here: a baseline
sinusoidal motion, and a more complex case from ICESat-1
flight data.

A. Simulated Star Observations and Alignment Updates

The true LRS attitude is ALRS
i �t� � A�aLRS�t��ALRS

ATLASA
ATLAS
i �t�

and the estimated LRS attitude is ÂLRS
i �t� � A�âLRS�t��

ALRS
ATLASA

b
i �t�, where ALRS

ATLAS is a constant reference alignment,

and aLRS�t� and âLRS�t� are small rotation vectors representing true
and estimated LRS alignments, respectively. LRS alignment tracking
error is the rotation vector difference e�t� � âLRS�t� − aLRS�t�.
When the attitude tracking error is small so that AATLAS

i ≈ Ab
i ,

the alignment tracking error is approximately equivalent to the

quaternion difference q�ÂLRS
i � ⊗ q�ALRS

i �� ≈ �ΔeT∕2 q4 �T .
Simulated star observations are given by the observation

model y� h�uobs� � h�ALRS
i uref�� �Δh Δv �T � η, where h�u� �

�u1∕u3 u2∕u3 �T ≡ �h v �T and u � h−1�u� � �h v 1 �T∕
k�h v 1 �k take advantage of the unit constraint to transform
between three-dimensional unit vectors u and the h, v coordinate
plane. The star catalog unit vector uref is expressed in the celestial
frame. Deterministic errors are represented by �Δh Δv �T, and η is
noise with an observation covariance of R � EfηηTg � σ2obsI2×2.
The ascending node of the SIMV9 orbits is near the x-axis of the

celestial frame, in the direction of the vernal equinox and right
ascension 0, and the nodal precession rate is relatively small
(0.25 degrees∕day). The LRS field of view covers a 12°-wide great-
circle strip of the sky that passes near the north and south celestial
poles, and right ascension 0 at the celestial equator. To change the
strip of sky viewed by the LRS without changing the SIMV9 orbit
and attitude values, catalog star unit vectors uref are offset in right
ascension by αnode. This has the same effect on LRS observations as
changing the ascending node of the orbit by −αnode.
Observation residuals are Δy � h�uobs� − h�ÂLRS

i uref�. All
of the information needed for estimating deterministic corrections
to the observations is contained in Δy and either h�uobs� or
h � �ÂLRS

i uref�. Body frame residuals Δybody � h��ALRS
ATLAS�T

h−1�uobs�� − h�Ab
i uref� are useful for interpreting correlations

in the residuals and alignments of multiple sensors, where
�ALRS

ATLAS�Th−1�uobs� and Ab
i uref are expressed in a local frame

based on the body frame x-axis with i � � 1 0 0 �T ×Ab
i uref ,

j � k × i, and k � Ab
i uref . Celestial frame residuals ΔyICRF �

h��ALRS
ATLASA

b
i �Th−1�uobs�� − h�uref� from multiple passes of a

particular star provide information for improving its mission catalog
record, where �ALRS

ATLASA
b
i �Th−1�uobs� and uref are expressed

in a local frame based on the celestial frame z-axis with
i � � 0 0 1 �T × uref , j � k × i, and k � uref .
The observation sensitivity matrix representing the relationship of

star observations to filter states is

H � ∂y
∂x
� ∂h

∂u
∂u
∂x
� ∂h

∂u

h
∂u
∂a 0 ∂u

∂aLRS

i
(10)

where from h�u� � �u1∕u3 u2∕u3 �T

∂h
∂u
�
�
1∕u3 0 −u1∕u23
0 1∕u3 −u2∕u23

�
(11)

The factors ∂u∕∂a and ∂u∕∂aLRS represent the sensitivity of star
observations to ATLAS attitude and LRS alignment variations. Their
derivation here follows [6,7].
For ∂u∕∂a the alignment is held constant and absorbed inALRS

ATLAS.
For a reference attitude Ar

i �t� arbitrarily close to AATLAS
i �t� and

a small attitude error rotation vector a with the first-order
approximation A�a� ≈ �I − �a×��, the attitude is modeled as
AATLAS
i �t� � �I − �a×��Ar

i �t�. Observed and reference unit vectors
are related by u � ALRS

ATLASA
ATLAS
i �t�uref and for ari → aATLASi as

a → 0

u � ALRS
ATLASA

r
i �t�uref −ALRS

ATLAS�a×�Ar
i �t�uref (12)

u � ALRS
ATLASA

r
i �t�uref −ALRS

ATLAS�Ar
i �t�uref×�a (13)

∂u∕∂a � ALRS
ATLAS�AATLAS

i �t�uref×� (14)

Similarly, for ∂u∕∂aLRS with a reference alignment Ar
b arbitrarily

close to ALRS
ATLAS and the approximation A�aLRS� ≈ �I − �aLRS×��,

the LRS alignment is modeled as A�aLRS�Ar
ATLAS � �I−

�aLRS×��Ar
LRS. Observed and reference unit vectors are related by

u � A�aLRS�Ar
ATLASA

ATLAS
i �t�uref and

u � Ar
ATLASA

ATLAS
i �t�uref − �aLRS×�Ar

ATLASA
ATLAS
i �t�uref (15)

u � Ar
ATLASA

ATLAS
i �t�uref � �Ar

ATLASA
ATLAS
i �t�uref×�aLRS (16)

∂u∕∂aLRS � �Aj
ATLASA

ATLAS
i �t�uref×� (17)

Alignment updates are performed using the Kalman gain
K � PHT�HPHT �R�−1, estimated state correction Δx �
�ΔaT ΔbT ΔaTLRS � � KΔy, and covariance update P� �
�I −KH�P−. The rate bias update is b̂� � b̂− � Δb̂, the updated
attitude estimate is qb� � q�Δa� ⊗ qb−, and the updated LRS
alignment is aLRS� � aLRS− � ΔaLRS.

B. Alignment Process Noise

The alignment process noise σLRS in Eq. (7) is the tuning parameter
for alignment tracking and depends on the characteristics of the star
observations and the LRS motion. More LRS motion means higher
σLRS value, but as σLRS increases alignment tracking becomes more
sensitive to noise and other errors in the star observations. The
objective is to find an adequate σLRS for reacting to LRS motion and
not reacting to star observation issues and errors. As a corollary,
different star observation characteristics, in particular different LRS
sensitivities, mean different σLRS values.
Multiple-model adaptive estimation is used to estimate σLRS by

testing a set of candidates. Each candidate is implemented in its own
filterHi and the set of candidates form a filter bankHi; i � 1; : : : ; n.
Simulated observations are input to the filter bank, and the results are
compared with simulation truth to select the best candidate. The
description here follows [27–29]. The observation probability for a
candidate and filter bank member Hi is given by P�ykjHi� �
�2π�−m∕2jSkj−1∕2 exp�−ΔyTkS−1

k Δyk∕2�, where Sk � HkPkH
T
k �

Rk and m is the number of filter states. At the beginning of a
simulation, each of theHi is assigned the same probabilityP0�Hi� �
n−1 of being the best. The probabilities are updated by
Pk�Hi��P�ykjHi�Pk−1�Hi�∕

P
n
j�1P�ykjHj�Pk−1�Hj�. If a Pk�Hi�

approaches 1 as tk increases, it is evidence that the associated
filter Hi and candidate are the most correct.
Table 1 shows the resulting estimated σLRS values for three LRS

sensitivities and four LRS motion amplitudes. The sensitivity values

SMITH, BAE, AND SCHUTZ 1841

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
X

A
S 

A
T

 A
U

ST
IN

 o
n 

D
ec

em
be

r 
3,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

32
96

6 



4.8, 5.0, and 5.2 are unitless ratios expressing limiting magnitude
cutoff, as described in Eq. (9). LRS motion is modeled as a simple
sinusoidal a sin θ, and the amplitudes a � 1, 2, 5, 10 arcsec are half
of the peak-to-peak amplitudes.
Table 1 demonstrates a strong dependence of σLRS on LRSmotion,

and a weak but detectable dependence on LRS sensitivity over this
range of input values.

C. Simulated LRS Alignment Variations

LRS alignment variation is expected to be periodic motion
repeating with the orbital period of 5670 s. Deviations from the
orbital variation due to scan maneuvers are expected to be small but
are a significant question for specialized studies. Evolution of the
orbital variation is expected on time scales of days and weeks as the
beta angle changes.
TwoLRSmotion cases are used here forMonte Carlo simulation: a

baseline sinusoidal motion, and ICESat-1 flight data. The baseline
case includes a random initial phase so that the motion peaks at
different times in each simulation run. Over a large set of runs there
will be peaks at or near every part of the orbit. The randomly
distributed sinusoidal motions build up a map of performance
characteristics with respect to the sky (numbers of stars, alignment
tracking errors, etc.) and provide increasingly uniform coverage as
the number of simulation runs increase. The baseline sinusoid
amplitude is 5 arcsec (10 arcsec peak-to-peak).
ICESat-1 flight data include directly observed alignment

variations that are used here as the basis for a class of realistic
nonsinusoidal models [1,16,30]. On ICESat-1, the alignment
between theLRSand instrument star trackerwas directly observed by
the LRS while a reference signal linking the LRS and IST coordinate
frames was operating [1]. Figure 8 shows LRS observations of the
reference signal motion over one orbit.
The orbital period is scaled from 5790 s for ICESat-1 to 5670 s for

ICESat-2. Because it provides a clear reference point, the jump or
step-change due to entering sunlight is used to define t � 0within the
simulated orbital variation. In practice, the jump comes at the same
phase of successive orbits, but again a random initial phase is used in
each simulation run so that the jumps occur throughout the orbit, as
for the baseline case.
The two alignment cases are viewed as test signals that are input

to the processor in order to study the output response. This is
particularly true for the sharp jump in the ICESat-1 case, because it
approximates a step function. It is treated as a proxy for an impulse

function for the purposes of driving a range of processor responses
and alignment tracking errors.

D. Alignment Tracking Error

LRS alignment tracking error is a time series of rotation vector
differences e�tk� � âLRS�tk� − aLRS�tk� between the estimated
alignment âLRS and the simulation truth aLRS. Using the LRS
coordinate frame conventions from Fig. 1, the error rotation is
expressed in LRS frame roll, pitch, and yaw e � � ex ey ez �. The
LRS frame z axis is zenith pointing, while ATLAS and body frame z
axes are nadir pointing, and expressed in the body frame
e � � ebx −eby −ebz �. As discussed in Sec. III.A, the focus here is
on roll errors ek ≡ ex�tk�. Roll and pitch results are similar in
principle, and the yaw results are on a much larger scale because the
star observations are significantly less sensitive to yaw than to roll
and pitch.
A set of i � 1; : : : ; n runs are performed for every Monte Carlo

simulation case, withn normally 50 here. The roll error time series for
each run ek�i� is sampled at 10 s intervals j � 1; : : : ; m. Within each
10 s sample ek�i; j�, there are k � 1; : : : ; 100 roll error values,
matching the 10 Hz observation frequency. The mean μ�i; j� ≡P

100
k�1 ek�i; j�∕100 and squared rms rms�i; j�2 ≡

P
100
k�1 ek�i; j�2∕100

are computed for each sample. The standard deviation σ�i; j�2 �
rms�i; j�2 − μ�i; j�2 is computed as needed. This approach is
directed toward computing overall results for sample j from all n
Monte Carlo runs. Mean, rms, and standard deviation values for
sample j are given by

μ�j� �
Xn
i�1

μ�i; j�∕n (18)

rms�j�2 �
Xn
i�1

rms�i; j�2∕n (19)

σ�j�2 � rms�j�2 − μ�j�2 (20)

Results for all samples and all runs are given by

μ �
Xm
j�1

Xn
i�1

μ�i; j�∕mn (21)

rms2 �
Xm
j�1

Xn
i�1

rms�i; j�2∕mn (22)

σ2 � rms2 − μ2 (23)

Time series of rms�j� values for n runs are a useful performance
measure as demonstrated in Figs. 9–11 over a 5670 s orbital period
(j � 1; : : : ; 567). The Monte Carlo simulation overall case here is

Table 1 Estimated σLRS, arcsec∕s1∕2

LRS motion amplitude, arcsec

LRS sensitivity,
instrument magnitudes 1 2 5 10

4.8 0.015 0.023 0.040 0.061
5.0 0.013 0.022 0.038 0.058
5.2 0.012 0.019 0.035 0.057

Fig. 8 ICESat-1 flight data for LRS alignment orbital variation in a) roll and b) pitch.

1842 SMITH, BAE, AND SCHUTZ

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
X

A
S 

A
T

 A
U

ST
IN

 o
n 

D
ec

em
be

r 
3,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

32
96

6 



the baseline sinusoidal alignment variation and LRS sensitivity 5.2.
The plots on the left show rms�i; j� for all n � 50 runs, and the plots
on the right show rms�j�. Figures 9–11 show roll, pitch, and yaw,
respectively, to demonstrate the similarity of roll and pitch and the
difference of yaw. The overall rms values calculated using Eq. (22)
are roll 0.34 arcsec, pitch 0.37 arcsec, and yaw 3.04 arcsec.
The broad distributions of results in the left-hand plots of rms�i; j�

reflect the random phases of the baseline sinusoidal alignment
variations, making that the results in each of the 50 runs differ
significantly. The right-hand plots of rms�j� are cumulative results
that reduce the effects of individual runs. In the limit as n grows very
large, the rms�j� plots show results that are effectively independent of
individual runs.

E. Star Observations and Alignment Tracking

Two features are apparent in Figs. 9–11. Beginning at 4000 s the
tracking errors decrease, followed immediately by an increase before
5000 s. Figure 12 shows the numbers of observed stars. The drop

Fig. 9 Roll rms errors for a) each of 50 runs and b) all 50 runs together.

Fig. 10 Pitch rms errors for a) each of 50 runs and b) all 50 runs together.

Fig. 11 Yaw rms errors for a) each of 50 runs and b) all 50 runs together.

Fig. 12 Star counts for LRS sensitivity 5.2.
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corresponds to a peak in the number of observed stars as the LRS line
of sight passes through the MilkyWay, and the increase corresponds
to a star gap in which counts drop to 0 or 1. LRS sensitivity is 5.2 in
this simulation. For lower sensitivities, the star peak is smaller and the
star gap is larger.
Figures 9–12 demonstrate the significance of observed star counts

and therefore of LRS sensitivity. Star counts can be predicted using a
star catalog and a model of LRS sensitivity; however, star counts
alone provide no information about alignment and attitude tracking
performance. Monte Carlo simulation simultaneously provides
information about tracking performance (Figs. 9–11) and star counts
(Fig. 12). It also provides detailed information about special cases
such as long star gaps and the conditions under which near-neighbor
stars are observed. Star gaps are directly characterized by the rms
tracking error time series. Over many simulation runs, the randomly
phased alignment variations act as test signals that produce output
signals during the gaps. An analogy is searching for holes on a
surface: searching point by point is similar to using a star catalog;
putting a light behind the surface is similar to using tracking errors.
Near-neighbor stars are cases where themission catalog record is a

center of light prediction for two ormore real stars. Figure 13 shows a
case that is important in the results section. The predicted center of
light is at the origin, Skymap 7080327 is bright and near the center of
light, and Skymap 7080200 is to the upper left. The radii of the circles
are scaled to represent predicted instrument magnitude for the center
of light and visual magnitude for the stars. Near-neighbors are
identified here by the brightest member, and so, for example, the case
shown in Fig. 13 is referred to as Skymap 7080327.
Near-neighbor stars are potential bad stars [23,25,26]. Center of

light prediction depends on the LRS sensitivity and response to the
brightness and color of each member star, as well as spatial geometry
[24]. The detailed conditions in which a near-neighbor star is
observed are also significant. If 20 stars are being observed, a small
error in the center of light prediction for 1 near-neighbor star has little
effect on the filter. If the near-neighbor star is the only star being
observed, an error in the center of light prediction can propagate
directly into the state estimate, as demonstrated below.

V. Results for LRS Pointing Knowledge Performance

The overall uncertainty in LRS pointing knowledge is approxi-
mated by σ2LRS � σ2ATLAS � σ2LRSA, where σATLAS is reference
platform attitude uncertainty and σLRSA is LRS alignment tracking
uncertainty. LRS pointing refers here to roll, pitch, and the direction
of the LRS line of sight in the celestial frame.
Results for rms attitude tracking errors are shown in Table 2 and are

used as an estimate of σATLAS.

A reference platform attitude uncertainty of σATLAS � 0.06 arcsec
is adopted here as a baseline reference value.
Results for σLRSA are based on a set of Monte Carlo simulations in

which the LRS views the full sky. The orbit inclination of 94° means
that the great-circle strip of sky observed by the LRS always includes
the north and south celestial poles. Varying the right ascension of the
ascending node α from 0° to 180° in 10° steps α � 0°; 10°; : : : ; 170°
gives full sky coverage, with the ascending passes sweeping over half
of the sky and the descending passes sweeping over the other half.
Many of the results discussed here are for these 18 orbits, often with
the addition ofα � 180° for comparisonwithα � 0° and verification
of periodic patterns in the results.
These results are for random phasing of the LRSmotion during the

simulation runs. The random phasing in effect puts equal weight on
each region of the sky. This normalizes the results for comparison, but
means that they are a type of upper-bound uncertainty estimate. In
flight telemetry, the phasing of the LRS motion is approximately
constant from one orbit to the next, not random, and there are
normally adequate LRS star observations during rapid changes of
alignment. TheMonte Carlo results tend to find theworst cases, with
rapidLRSmotion and no star observations,more frequently than they
occur in flight data. This is particularly true for the ICESat-1 flight
data case. The asymmetric and sharp nature of its saw-tooth motion
(Fig. 8) picks out areas of the sky with sparse star observations more
strongly than the symmetric and smooth baseline motion case.
Figure 14 summarizes roll axis results for the baseline LRSmotion

case. The left plot shows the number of star observations per orbit as a
function of α and LRS sensitivity. The number of star observations is
smallest for orbits near α � 0° and largest near α � 90°. The right
plot showsmedian�σ�j�� [Eq. (20)] for roll over 50 simulation runs at
each α and LRS sensitivity. The expected inverse relationship
between sensitivity in the left plot and tracking performance in the
right plot is clear.
Figure 15 shows overall rms [Eq. (22)] for roll over the same 50

runs as Fig. 14. The values in Fig. 15 are correlated with the
median�σ�j�� values in Fig. 14 because the errors are approximately
zero mean with rms�j� ≈ σ�j�. However, the rms values are more
sensitive to certain events than themedian�σ�j�� values. The spike at
α � 80° is discussed in more detail below.
Table 3 gives the rms roll tracking errors for bothLRSmotion cases

and the three LRS sensitivities, with the baseline motion case to the
left and the ICESat-1 flight data case to the right. As in Fig. 15, each
rms is computed from 50 × 5670 × 10 � 2.8 × 106 error values.
Table 4 characterizes overall LRS pointing knowledge uncertainty.

It shows LRS pointing uncertainties σLRS � �σ2ATLAS � σ2LRSA�1∕2
for the three LRS sensitivities, both motion cases, and three scalings
(0.5, 1, 1.5) of the motion amplitudes.
A pointing knowledge uncertainty of σLRS � 0.27 arcsec is

adopted here as a baseline reference value.

A. Sky Maps

The estimate σLRS � 0.27 arcsec characterizes performance over
the full sky. Local performance varies significantly, particularly in
regionswhere there are fewer stars than normal. The rms roll tracking
error in Fig. 15 demonstrates a significant localized interaction
between the star observations and alignment tracking errors in the
spike at α � 80°.
Figure 16 shows star count and rms roll tracking error time series

for the orbit at α � 80°. The 50 Monte Carlo runs use the baseline
LRS motion case. The gap in star observations and resulting spike in

Fig. 13 Near-neighbor star Skymap 7080327.

Table 2 Reference platform rms attitude
tracking errors, arcsec

Noise scaling Nadir pointing Peak acceleration

0.33 0.03 0.03
0.5 0.04 0.04
1 0.06 0.05
2 0.1 0.08
3 0.15 0.13
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tracking errors near 4800 s is the source of the upward spike in
Fig. 15. The results for the three LRS sensitivity cases 4.8, 5.0, and
5.2 are plotted together as three time series. The time series with
fewer star observations and larger tracking errors is the sensitivity
4.8 case.
These time series represent a one-dimensional slice or sample of

the full sky. If they are laid vertically side by side with similar time

series for other ascending nodes, two-dimensional maps of the sky
are built up, with the ascending node on the horizontal axis and time
on the vertical axis. These skymaps are generated here by performing
50 Monte Carlo runs at each integer orbit node from 0° to 359°, with
10 s subsampling of each run. The resulting maps consist of a grid of
567 × 360 cells. The results from 180° to 359° are mostly redundant
with the results from 0° to 179°, but there are small geometric
differences between ascending and descending passes in a given
region of the sky.
Figures 17–19 show star observation counts and rms roll tracking

errors for the baselineLRSmotion case andLRS sensitivities 4.8, 5.0,
and 5.2. Results for each integer node from 0° to 180° are plotted.
Node number forms the horizontal axis, from node 0° at the origin to
node 180° on the right. The vertical axis is time with t � 0 s at the
origin and 5670 s at the top. At a given node, ascending from the
horizontal axis to the top of the plot traverses the same type of time
series as in Fig. 16. The spacecraft is passing through the ascending
node at t � 0 s and the horizontal axis corresponds to declination 0°.
At the top of the plot the spacecraft has returned to declination 0° by
completing an orbit after passing the North Pole at t � 1417 s, the
descending node at t � 2834 s, and the South Pole at t � 4251 s.
The 567 × 360 � 204, 120 cells of the sky maps are used to

characterize the overall abundances of star gaps and near-neighbor
stars. Each cell represents 10 s of time and the cells are all equivalent
for the purposes of determining how much time the LRS spends in
star gaps or observing near-neighbor stars, despite the variable spatial
overlap of adjacent cells. The cells have more spatial overlap on the
sky at the celestial poles and less overlap at the celestial equator. Near
the poles the cells from every orbit cover the same small region of the
sky; they are similar to a set of rotated but essentially overlapping
LRS fields of view. Table 5 shows overall characteristics of the sky for
the three LRS sensitivities.
Cells containing only a near-neighbor star are relatively rare and

dominated by a handful of near-neighbors. This is significant because
these are cases where biased center-of-light position predictions and
bad stars aremost problematic. In otherwords, only a handful of near-
neighbor stars are potentially significant problems. Important
examples are shown in Table 6. Near-neighbor stars are identified
here by the Skymap number of the brightest member star.

Fig. 14 Relationship of a) LRS sensitivity and b) roll tracking error median�σ�j��.

Fig. 15 The rms roll tracking error.

Table 3 The rms roll tracking error,
arcsec

Baseline ICESat-1

Node 4.8 5 5.2 4.8 5 5.2

0 0.34 0.28 0.24 0.40 0.34 0.29
10 0.33 0.28 0.25 0.40 0.33 0.31
20 0.32 0.28 0.25 0.36 0.33 0.31
30 0.33 0.27 0.24 0.40 0.32 0.32
40 0.32 0.27 0.26 0.40 0.32 0.31
50 0.29 0.27 0.24 0.34 0.32 0.28
60 0.29 0.26 0.25 0.36 0.32 0.27
70 0.29 0.26 0.24 0.38 0.33 0.28
80 0.33 0.31 0.25 0.38 0.35 0.34
90 0.26 0.23 0.21 0.30 0.27 0.26
100 0.28 0.24 0.22 0.33 0.30 0.28
110 0.31 0.24 0.22 0.38 0.30 0.26
120 0.32 0.27 0.24 0.38 0.32 0.29
130 0.29 0.24 0.23 0.35 0.30 0.32
140 0.27 0.24 0.22 0.32 0.28 0.27
150 0.28 0.24 0.23 0.33 0.31 0.28
160 0.29 0.26 0.22 0.36 0.33 0.26
170 0.29 0.25 0.21 0.34 0.30 0.26
180 0.39 0.32 0.25 0.42 0.39 0.30

Table 4 LRS pointing knowledge uncertainty

σLRS � �σ
2
ATLAS � σ2LRSA�

1∕2, arcsec

LRS sensitivity

LRS motion 4.8 5 5.2

Baseline × 0.5 0.15 0.13 0.12
Baseline × 1.0 0.31 0.27 0.24
Baseline × 1.5 0.41 0.35 0.33
ICESat-1 × 0.5 0.21 0.17 0.15
ICESat-1 × 1.0 0.36 0.32 0.29
ICESat-1 × 1.5 0.47 0.45 0.42
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Fig. 16 Node 80° a) star observation counts and b) rms roll tracking errors.

Fig. 17 LRS sensitivity 4.8 a) star counts and b) rms roll tracking errors in arcseconds.

Fig. 18 LRS sensitivity 5.0 a) star counts and b) rms roll tracking errors in arcseconds.

Fig. 19 LRS sensitivity 5.2 a) star counts and b) rms roll tracking errors in arcseconds.
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B. Star Gaps and Bad Stars

The tracking error maps for all three LRS sensitivities (Figs. 17–
19) have a significant feature in common: a peak near node 80° and
t � 4500 s caused by a star gap at right ascension 88° and declination
−80°. What makes this gap special is its length for orbits with nodes

between approximately 75° and 85°. Figure 20 shows that, due to
geometry, for these orbits the gap is approximately 250 s long. The
shape of the gap in the sky happens to coincidewith the direction that
the spacecraft is traveling. Figure 20 also shows a dot pattern
indicatingwhere theLRS is observing the near-neighbor star Skymap
7080327. It is the only observable star as the spacecraft leaves the gap
for nodes between approximately 80° and 85°.
High-resolution full-sky maps confirm that the situation in Fig. 20

is unusual because of both the size of the star gap and the adjacent
isolated near-neighbor star. This situation is a good test case for
studying the effects of both star gaps and problematic near-
neighbor stars.
Figure 21 shows the effects of near-neighbor stars with biased

center-of-light position predictions (bad stars) on rms alignment
tracking error. The left plot in Fig. 21 shows the counts of observed
stars near the star gap for orbit node 82° and LRS sensitivity 4.8. The
star observed immediately after themain part of the gap, from4340 to
4500 s, is the isolated near-neighbor star Skymap 7080327. Another
near-neighbor star is observed shortly before the gap, from 3980 to
4170 s. The two near-neighbor stars are identified here by their
brightest members: Skymap 7080327 and Skymap 16200091,
respectively.
The right plot shows simulation results for three cases: a baseline

case and two bad star cases. In the baseline case, both near-neighbor
stars have unbiased center-of-light position predictions. In the two
bad star cases, the center-of-light positions are both biased with a
position offset of 1 or 2 arcsec. Each rms tracking error time series
combines the results from 50 simulation runs.
Before the star gap, the effect of center-of-light bias for Skymap

16200091 is reduced by the filter updates from the other stars being
observed simultaneously. In the star gap, however, the full effect of
the bias for Skymap 7080327 is added to the previously accumulated
effects of the gap.

Table 5 Sky characteristics for maps with 204,120 cells

Sensitivity

4.8 5.0 5.2

Number of unique stars 1,083 1,385 1,750
Number of unique near-neighbor stars 99 114 146
Cells with no stars 8,210 4,084 3,474
Percentage of cells with no stars 0.04 0.02 0.017
Cells with a near-neighbor star 53,214 61,632 78,666
Percentage of cells with near-neighbor stars 0.26 0.30 0.38
Cells containing only near-neighbor stars 918 481 246

Table 6 Counts of cells containing only a near-neighbor star

Sensitivity 4.8 Sensitivity 5.0 Sensitivity 5.2

Skymap id Cells Skymap id Cells Skymap id Cells

8460162 249 8460162 149 8460162 89
18560046 133 18560046 73 18560046 45
7080327 78 7080327 52 7080327 33
15340134 45 15340134 45 15340134 8
12560007 175 12560007 4 — — — —

14410169 58 14410169 3 — — — —

— — — — 2590026 51 2590026 49
— — — — 8120049 23 8120049 10

Fig. 20 Expanded view of star gap for LRS sensitivities a) 4.8 and b) 5.2.

Fig. 21 Roll tracking error with bad stars near the star gap.
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VI. Conclusions

Pointing knowledge performance is strongly dependent on the
sensitivity of the laser reference sensor (LRS) star observations. A
decrease in sensitivity means more need for modeling of the LRS
motion relative to the SSTs. Ideally, the motionmodel would provide
adequate pointing knowledge performance by itself and the star
observations would act as empirical verification. In practice, star
observations are used to correct and improve the motion model over
time, and if they are plentiful enough, the model becomes less
necessary.
The results for the ICESat-1 flight data case demonstrate that, if

there is rapid LRS motion, ground processing to learn and model the
characteristics of the motion will be essential. Over time, ground
processing can determine common features and trends in the motion
and take advantage of that knowledge to improve the overall results.
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