
 

Sensors 2015, 15, 16412-16429; doi:10.3390/s150716412 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

An Autonomous Star Identification Algorithm Based on  
One-Dimensional Vector Pattern for Star Sensors 

Liyan Luo, Luping Xu * and Hua Zhang * 

School of Aerospace Science and Technology, Xidian University, Xi’an 710126, China;  

E-Mail: liyanluo@stu.xidian.edu.cn  

* Authors to whom correspondence should be addressed; E-Mails: xiaoyan12027@gmail.com (L.X.); 

zhanghua@mail.xidian.edu.cn (H.Z.); Tel.: +86-29-8820-2263 (ext. 601) (L.X.);  

+86-29-8189-1034 (H.Z.).  

Academic Editor: Vittorio M.N. Passaro 

Received: 21 May 2015 / Accepted: 2 July 2015 / Published: 7 July 2015 

 

Abstract: In order to enhance the robustness and accelerate the recognition speed of star 

identification, an autonomous star identification algorithm for star sensors is proposed 

based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the 

space geometry information of the observed stars is used to form the one-dimensional 

vector pattern of the observed star. The one-dimensional vector pattern of the same 

observed star remains unchanged when the stellar image rotates, so the problem of star 

identification is simplified as the comparison of the two feature vectors. The one-dimensional 

vector pattern is adopted to build the feature vector of the star pattern, which makes it 

possible to identify the observed stars robustly. The characteristics of the feature vector 

and the proposed search strategy for the matching pattern make it possible to achieve the 

recognition result as quickly as possible. The simulation results demonstrate that the 

proposed algorithm can effectively accelerate the star identification. Moreover, the 

recognition accuracy and robustness by the proposed algorithm are better than those by the 

pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical 

analysis and experimental results show that the proposed algorithm outperforms the other 

three star identification algorithms. 
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1. Introduction 

Celestial navigation has a broad application prospect in the automated sky survey system and the 

deep space exploration. Star sensors have good autonomy, high precision and work reliably, and they 

play an important role in the celestial navigation. In the “lost-in-space” mode, star sensors can 

automatically determine the spacecraft attitude [1–3] without a priori attitude information. The 

performance of the star identification algorithm directly affects the attitude determination of the 

spacecraft. The recognition accuracy of the star identification algorithm affects the system precision of 

star sensor, and the recognition speed of star identification affects the responsiveness of star sensor. 

Therefore, a rapid and robust star identification algorithm is necessary. 

During the past few decades, many star identification algorithms have been created which are 

widely used in the spacecraft attitude determination and control when no a priori attitude information 

is available [4]. The star identification algorithms mainly include the polygon algorithm [5–15], the 

match group algorithm [16], the grid algorithm [17–21], the neural network algorithm [22–24], the 

genetic algorithm [25,26], and so on, which can be roughly classified into two basic categories [27]: 

subgraph isomorphism and pattern recognition. 

The triangle algorithm [10,11] is a classical star identification algorithm and many other star 

identification algorithms are derived from it. In the triangle algorithm, every three observed stars forms 

a triangle and its angular distances are adopted as the feature for star identification. However, there are 

many stars existing at small angular distances which are difficult to distinguish from each other under 

the noise interference. In addition, the angular distance is sensitive to noise, which is easy to cause 

mismatching. The polygon algorithm is derived from the triangle algorithm. Since the dimension of the 

identification feature is limited in the polygon algorithm, a lot of the information of the stars observed 

in the field of view (FOV) cannot be efficiently used. Although the increase of the dimension of the 

identification feature can improve the utilization of the stars’ information, the recognition algorithm is 

complicated which is not good for star identification. Mortari et al. [7] used five observed stars to 

increase the dimension of the identification feature, which can reduce the redundant matching to some 

extent. Moreover, some improved algorithms have been proposed to solve the existing problem in the 

triangle star identification algorithm [12–15]. But the inherent shortcomings of the triangle algorithm 

cannot be solved thoroughly. 

The pattern-based star identification algorithm has incomparable advantages compared with the 

subgraph-isomorphism-based star identification algorithm, and much effort has been made in research 

about the pattern-based star identification. 

In 1997, Padgett et al. [17] proposed the grid algorithm for autonomous star identification in which 

the star recognition problem is converted into the comparison of the two 0–1 strings. In the grid 

algorithm, multiple pixels are divided into a grid cell, so this algorithm is insensitive to the positional 

noise. But the measurement precision of the magnitude and the choice of the subaltern star have great 

impact on the accuracy and reliability of the grid algorithm. Lee et al. [18–21] proposed a modified 

grid algorithm in which the recognition accuracy is better than that of the original one. Both the 

original grid algorithm and the modified grid algorithms need to store the entire star pattern, so they 

require more memory space to store the feature database. In addition, the size of the feature database 

increases with the increase of the grid cells. 
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Wei et al. [28] used the Log-Polar transform to convert the rectangular coordinate system into the 

polar coordinate system in which the translation and rotation of the observed stars is simplified as the 

displacement operation. The LPT algorithm has a strong anti-interference ability against position noise 

and the magnitude noise. But a lot of time will be taken in the search for the matching star pattern of 

the observed star pattern in the feature database. In recent years, some novel star identification 

algorithms have been proposed, such as the singular value method [29], the vector pattern matching 

method [30], the pattern code method [31], and so on [16,32–38]. These algorithms have the same goal 

which is to identify the stars as quickly and robustly as possible and they solve the problem of star 

identification in different aspects. However, there still is no optimal star identification algorithm to date. 

In order to reduce the time-consumed and enhance the robustness of star identification, we propose 

an autonomous star identification algorithm based on the one-dimensional vector pattern. In this 

method, the main star and the alignment star are chosen to reset the new coordinate axes firstly. That 

makes it possible to establish the one-to-one relationship between every navigation star and its  

one-dimensional vector pattern. Secondly, all stars observed in FOV are projected onto the new 

coordinate axes using the rotation matrix. Then the observed stars, locating in the neighboring region 

of the main star, are used to build the one-dimensional vector pattern of the main star. Finally, the 

feature vector of the main star can be achieved according to the one-dimensional vector pattern. 

The one-dimensional vector pattern not only describes the position information of the observed 

stars, but also expresses the angular information between the observed stars and the horizontal axis.  

The one-dimensional vector pattern can fully express the space geometry information of the stars observed 

in FOV, which has greatly contributed to the star identification. In addition, the one-dimensional vector 

pattern of the same navigation star remains unchanged when the stellar image rotates, so there is a  

one-to-one relationship between the navigation star and its one-dimensional vector pattern, which 

makes it possible to identify the observed star quickly. 

The rest of this paper is organized as follows. In Section 2, the one-dimensional vector pattern is 

introduced in detail. The star pattern generation and the identification process are described in Section 3. 

The simulation conditions are introduced in Section 4. In Section 5, the simulation results and the 

numerical analysis are given. Finally, in Section 6, the concluding remarks are made. 

2. Description of the One-Dimensional Vector Pattern 

Generally, the position information and the magnitude of the navigation star are considered as the 

basic characteristics of the navigation star. In many star identification algorithms, the position 

information is used to build the geometric feature to identify the navigation star. The magnitude of the 

navigation star also can be used to identify the navigation star. However, the magnitude is unstable and 

it is used only for the rough estimation. In this paper, only the position information of the navigation 

star is used to identify the navigation star. 

2.1. The Imaging Principle in Star Sensor 

The star catalog and astronomical almanac express a star’s position in terms of its right ascension α 

and declination β in the celestial sphere reference frame (see Figure 1a). The parallel light from stars is 

imaging on the focal plane of the charge-coupled device (CCD) in star sensor, so the position of the 
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star in the celestial sphere reference frame is expressed in terms of pixels along the x and y axes on the 

stellar image (see Figure 1b). The light points on the stellar image are the stars observed in FOV (see 

Figure 1c), which are the research objects in star identification. Before the experiment, it needs to 

simulate the stellar image according to the information of the navigation stars in the star catalogue. 
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Figure 1. Stellar image in star sensor. (a) Celestial sphere reference frame; (b) The 

imaging principle in star sensor; (c) The stars observed in FOV. 

Generally, only the plane position of the observed star can be achieved in star sensor. During the process 

of star recognition, the geometric position relationships among the observed stars are adopted to identify 

the positions of the observed stars in the celestial sphere reference frame. In the simulation experiments, the 

right ascension and declination of the navigation star in the celestial sphere reference frame need to be 

converted into the plane coordinates firstly. The transformation relation can be expressed as 
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 (1)

where (Nx, Ny) is the resolution of CCD in star sensor, (FOVx, FOVy) is the FOV of CCD, (αi, βi) is the 

right ascension and declination of the ith observed star, and (α, β) is the optical axis direction of CCD. 

The optical axis direction of CDD points to the position of the star in the celestial sphere reference 

frame, which is projected on the center of the stellar image. The centroid coordinates (xr, yr) are used 

as the actual centroid coordinates of the navigation star in the simulation experiments. 
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2.2. The One-Dimensional Vector Pattern 

Aiming at the improvement of the speed of star identification, the one-to-one relationship between 

the navigation star and its one-dimensional vector pattern is built in the proposed algorithm. In order to 

achieve the unique pattern of the navigation star, the centroid coordinates of stars observed in FOV are 

reset. In the process of star identification, one of the observed stars is chosen as the main star, and the 

observed stars located in the neighboring region with a radius of R (see Figure 2) are called the 

neighbor stars of the main star. The star pattern of the main star consists of the main star and its 

neighbor stars. The nearest neighbor star is regarded as the alignment star of the main star. The direction 

from the main star to the alignment star is considered as the vector direction of the star pattern. 
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Figure 2. The vector direction of the star pattern. (a) The alignment star; (b) The stellar 

image is rotated. 

In order to achieve the unique star pattern when the stellar image rotates, the centroid coordinates of 

the observed stars are reset based on the vector direction of the star pattern. The centroid coordinates 

of the star observed in FOV is expressed as (x, y) on the stellar image in oxy coordinates. The centroid 

coordinates of the main star and the alignment star are set to be (xs, ys) and (xa, ya), respectively.  

The direction from the main star to the alignment star is expressed as s as s


, which is denoted as the oʹxʹ 

axis among the new coordinate axes (see Figure 2). The plane included angle θr between the ox axis 

and the oʹxʹ axis is expressed as 

, arctan( )a s
r s a

a s

y y
s s ox

x x

−θ = =
−

 
 (2)

The plane included angle θr is set to be positive from the ox axis to s as s


 on counterclockwise.  

The stellar image is rotated with the angle of θr, and the vector direction is denoted as the oʹxʹ axis.  

The right-hand rule is used to obtain the oʹyʹ axis, and then the centroid coordinates of the stars are 

expressed in terms of pixels along x′ and yʹ axes in the oʹxʹyʹ coordinates. The new centroid coordinates 

of the observed stars in the oʹxʹyʹ coordinates will be achieved using Equation (3).  
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 (3)
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where (x, y) are the centroid coordinates of the observed star in the oxy coordinates, and (xʹ, yʹ) are the 

new centroid coordinates of the corresponding observed star in the oʹxʹyʹ coordinates, and M is the 

rotation matrix. The offsets between the origin of the oxy coordinates and the origin of the oʹxʹyʹ 

coordinates can be expressed as  

0 0,s sx x x y y yΔ = − Δ = −  (4)

where (x0, y0) is the origin of the oxy coordinates. Generally, x0 = 0 and y0 = 0, so the offsets can be 

rewrote as 

,s sx x y yΔ = − Δ = −  

As described above, the new centroid coordinates of the observed stars can be achieved using 

Equation (5), when the stellar image rotates with the plane included angle of θr. 

cos sin

sin cos
s sr r

r r s s

x xx x x
M

y y y y y

′ − −θ θ          = + = +         ′ − θ θ − −          
 (5)

The relative position of every two observed stars remains unchanged when the stellar image rotates. 

The main star locates on the origin of the oʹxʹyʹ coordinates. The horizontal axis coordinates of the 

observed stars in the star pattern indicate the positions of these stars on the oʹxʹ axis (see Figure 2a).  

Set the plane included angle between the neighbor star and the alignment star as θ, and the plane 

included angle along the counterclockwise as positive (see Figure 2b). The positions and the plane 

included angles of the observed stars in the star pattern are adopted as the characteristics of the star 

pattern. The one-dimensional vector pattern of the star pattern can be expressed 

( ) ( ){ } ( ){ }1 1, , , , , , 1, ,n n i iV x x x i n′ ′ ′= θ θ = θ =   (6)

where ix′  is the horizontal axis coordinate of the ith neighbor star, and θi is the plane included angle 

between the ith neighbor star and the alignment star, and n is the number of the observed stars in the  

star pattern. 

According to the centroid coordinates of the observed stars in the star pattern, the plane included 

angle between the neighbor star and the alignment star can be achieved using Equation (7). 
1tan ( / )i i iy x− ′ ′θ =  (7)

It should be noted that the plane included angle between the neighbor star and the alignment star 

ranges from −180° to +180°. The centroid coordinates of the main star is (0, 0) in oʹxʹyʹ coordinates, 

and the plane included angle of the alignment star is 0°. 

The one-dimensional vector pattern not only expresses the position information of the observed 

stars, but also describes intuitively the information of the plane included angles between the neighbor 

stars and the alignment star, which can fully express the space geometry information of the observed 

stars in FOV. 
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3. Generation of the Feature Vector and the Process of Star Identification 

3.1. Generation of the Feature Vector 

In order to enhance the robustness of the proposed algorithm, the oʹxʹ axis within the scope of 2R is 

divided at regular intervals (see Figure 3b). Set the resolution of the oʹxʹ axis locating in the 

neighboring region of the main star be m, so the interval on the oʹxʹ axis will be 2R/m. The feature 

vector of the main star can be achieved according to the results of the one-dimensional vector pattern. 

So the feature vector of the main star can be expressed as 

( ) { }1 2( ) , , , 1, ,m jpat s a a a a j m= = =   (8)

As described above, the pattern of the main star is expressed as a 1 ´ m vector pat (s). Each value in 

pat (s) indicates that whether there are observed stars whose horizontal axis coordinates are located in 

the corresponding interval or not. For every value in pat (s), that is 

[ ) ( ) ( ) ( ), ( 1) 2 / , 2 /
, , , 1, , , 1, ,

0,
i i

j i i

x j R m j R m
a x V i n j m

else

θ ∈ − × ×= θ ∈ ∈ ∈


   (9)

where [(j − 1) ´ 2R/m, j ´ 2R/m) is the scope of the jth value in pat (s) on the oʹxʹ axis, and n is the 

number of the observed stars in the star pattern, and V is the one-dimensional vector pattern of the  

star pattern. 

If there is more than one observed star whose horizontal axis coordinates locate in the jth interval of 

the oʹxʹ axis, the maximum plane included angle among these observed stars will be chosen as the 

value of aj. That is 

{ }1max , ,j pa = θ θ  (10)

where p is the number of the observed stars whose horizontal axis coordinates locate in the jth interval 

of the oʹxʹ axis. If there has no observed star whose horizontal axis coordinate locates in the jth 

interval, aj = 0. 
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(a) (b) 

Figure 3. Generation of the one-dimensional vector pattern. (a) The positions of the 

observed stars on oʹxʹ axis; (b) The plane included angles. 
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3.2. Process of Star Identification 

The feature vector of every navigation star can be achieved according to the extraction method of 

the feature vector described above, and all these feature vectors form the feature database of the 

navigation stars. During the process of star identification, one of the stars observed in FOV is chosen 

as the main star, which will be used to build the feature vector with its neighbor stars. Then the feature 

vector of the main star will be compared with the feature vectors in the feature database to find the 

matching star pattern. 

Let the feature vector of the navigation star in feature database be pat(c), and the feature vector of 

the star observed in FOV be pat(s).The similarity between pat(s) and pat(c) is measured by the 

summation of the absolute differences of the two feature vectors. The summation of the absolute 

differences of the two feature vectors can be expressed as 

( ( ), ( )) ( ( ) ( )), 1, ,diff pat s pat c abs pat s pat c c N= − =   (11)

where N is the number of the navigation stars in the feature database. The smaller the summation, the 

more similar the two feature vectors become. As described above, the comparison of the two star 

patterns is converted into the comparison of the two vectors, which greatly simplifies the problem of  

star identification. 

In order to accelerate star identification and avoid searching the entire feature database to find the 

matching star pattern, a search strategy is proposed to achieve the matching result as quickly as 

possible. That is the number of the non-zero values in the feature vector is used to constraint the search 

scope in the feature database. 

Assume that the number of the non-zero values in pat(s) is Ls, then the feature vectors in the feature 

database with the number of the non-zero values between Ls − ε1 and Ls + ε2 will be compared with 

pat(s). Therefore, it can quickly achieve the matching result with fewer comparisons instead of the 

searching through the entire feature database. So the process of star identification can be expressed as 

( )( )
( )( )

1 2

0

min ( ), ( ) , [ , ]

min ( ), ( )

c s s
c

c

result diff pat s pat c L L L

diff pat s pat c

= ∈ − ε + ε

≤ ε
 (12)

where Lc is the number of the non-zero values in pat(c), ε1 and ε2 are the tolerances of the number of 

the non-zero values, and ε0 is the pre-set value. The difference between the best matching pattern and 

the main star pattern is smallest among the comparison results. Meanwhile, the smallest difference is 

not larger than the pre-set value. 

From the above description, the record of every star pattern in the feature database can be  

expressed as 

{ }Re , , ( ) , 1, ,cm cord id L pat c c N= =   (13)

where id is the index of the navigation star. 
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4. Simulation Conditions 

4.1. Parameter Setting for Star Sensor 

The Tycho-2 catalogue is used as the source of the navigation stars data. Some stars in the star 

catalogue may be lack of brightness or location information, so that they cannot be chosen as the 

navigation stars. Due to the limitation of the resolution of CCD in star sensor, it cannot clearly 

distinguish the two stars when they appear too close. In this paper, two stars apart less than 20 pixels 

apart (about 0.39°) are considered binary stars, which cannot be chosen as the navigation star. 

Therefore, there are 6685 stars to be chosen as the navigation stars whose apparent magnitudes range 

from 1.0 Mv to 6.5 Mv. Each of the navigation stars is chosen in turn as the optical axis direction of 

CCD to implement the process of star identification. The resolution of the simulated stellar image is  
1024 ´ 1024 pixels with a 20° ´ 20° FOV. The average number of the stars observed in FOV is 30.32, 

with 68 as the maximum and 3 as the minimum. The experiments are carried out using a 

microcomputer with a 3.20 GHz Pentium (R) Dual-Core, 1.96 GB RAMS. All tests are carried out in 

the same simulation conditions. 

The achievable performance of the proposed algorithm is demonstrated via a comparison study 

between the pyramid algorithm [8], the modified grid algorithm [20] and the LPT algorithm [28].  

This paper has revealed the influence of the positional noise, the false stars, and the lost stars on the 

star identification in the four star identification algorithms. The complexity of the proposed algorithm 

was also compared with that of the other three algorithms. 

Due to the characteristics of the star pattern, the observed stars close to the center of FOV are 

chosen as the main stars to complete the star identification. The attitude of the spacecraft can be 

calculated based on the position information of every three observed stars [1]. Therefore, the 

identification process is considered to be unsuccessful when the number of stars observed in FOV is 

less than three. 

4.2. Selection of the Identification Parameters 

As is well known, a lot of the geometric information about the observed stars located on the edge of 

FOV is lost. In order to obtain the geometry information out of the observed stars as much as possible, 

the observed stars near the center of FOV are chosen as the main stars in this paper. The resolution of 

the oʹxʹ axis locating in the neighboring region of the main star is set to be m = 100. During the process 

of star identification, the tolerances of the number of the non-zero values are set to be ε1 = ε2 = 1, and the 

pre-set value ε0 is set to be 172 in experience.  

The number of the observed stars in the neighbor region is different with the different neighborhood 

radius for the same main star. So the choice of the neighborhood radius R will affect the number of the 

neighbor stars of the main star, so as to affect the star pattern of the main star. Therefore, it is 

necessary to choose an appropriate neighborhood radius R. If R is too small, much geometric 

information of the stars observed in FOV will be ignored, and it cannot be possible to structure the 

unique pattern for every navigation star. If R is too large, the amount of the geometric information of the 

observed stars is too large to be easily manipulated. In addition to this, the star pattern is sensitive to 

noise when R is too large, which is rather obvious when the main star locates on the edge of the FOV. 



Sensors 2015, 15 16421 

 

 

In this section, we discuss the recognition accuracy of the proposed algorithm under different 

neighborhood radiuses. Figure 4 shows the statistics results without any noise that every navigation 

star is adopted as the direction of the optical axis when R ranges from 3° to 10°. It can be found from 

Figure 4 that the recognition rate of the proposed algorithm changes with the increase of R. The 

recognition rate is very low when R is small, and subsequently the recognition rate increases with the 

increase of R. It achieves the largest recognition rate when R = 6°, then the recognition rate falls down 

with the increase of R. In the subsequent tests, the neighborhood radius is set to be R = 6°. 

 

Figure 4. Recognition rate with different neighborhood radiuses R. 

5. Experiment Results and Analysis 

The evaluation criteria of the star identification algorithm mainly includes the influence of 

positional noise, false stars, lost stars on the recognition accuracy of star identification, the recognition 

speed of star identification, and memory usage. In this section, we describe the performance of the four 

star identification algorithms under the same simulation conditions. 

5.1. Performance of Different Algorithms under Positional Noise 

There are many different noises [39] in star sensors, and the positional noises are simplified in this 

paper. The positional noises are directly added into the actual centroid coordinates of the stars 

observed in FOV to investigate the robustness of the four star identification algorithms in terms of the 

positional noise. 

Figure 4 shows the recognition rates of the four star identification algorithms in which only the 

positional noises are added. The results show that the anti-noise ability of the proposed algorithm is 

better than that of the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The 

recognition rate of the proposed algorithm is up to 98.55% when the positional noise is 0.5 pixels, 

while the recognition rates of the pyramid algorithm, the modified grid algorithm, and the LPT 

algorithm are just about 96.76%, 97.61%, and 91.76%, respectively. 

It can be known from Figure 5 that the recognition rate of the proposed algorithm is higher than that 

of the other three algorithms, and the downtrend of the recognition rate of the LPT algorithm is greater 

than that of the other three algorithms. With the increase of the positional noise, the recognition rate of 
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the proposed algorithm decreases just about 1.37%, while the recognition rates of the pyramid 

algorithm, the modified grid algorithm, and the LPT algorithm decrease about 3.06%, 1.43%, and 

7.89%, respectively. From the analysis data, it can be found that the downtrend of the modified grid 

algorithm is similar to that of the proposed algorithm with the increase of the positional noise, and the 

LPT algorithm is sensitive to the positional noise which has the biggest decline of 7.89%. 

As can be seen by the above description, the proposed algorithm outperforms the pyramid 

algorithm, the modified grid algorithm, and the LPT algorithm in terms of the positional noise. 

 

Figure 5. Recognition rates vs. positional noise (F: false star, L: lost star). 

5.2. Performance of Different Algorithms under False Stars 

Space debris and spacecraft, which may be mistaken as the observed stars (false stars), will affect 

the performance of the star identification algorithm. In this section, false stars will be added on the 

simulated stellar image to verify the performance of the star identification algorithm. The positions of 

false stars are random on the simulated stellar image. 

Figure 6 shows the statistical results of the recognition rates of the four algorithms for all 6685 

navigation stars with the number of false stars ranging from 1 to 3. In Figure 6, without positional 

noise, the identification rate of the proposed algorithm decreases from 99.80% to 98.90% when the 

number of the false stars increases from 1 to 3. Under the same conditions, the rate of the pyramid 

algorithm decreases from 92.85% to 80.27%, and the rate of the modified grid algorithm decreases from 

99% to 86.50%, and the rate of the LPT algorithm decreases from 98.47% to 95.46%. It can be found 

that the recognition rates of the four algorithms decrease 0.9%, 12.58%, 12.5%, and 3.01%, respectively. 

As can be seen by the above analysis, the declines of the recognition rates of the pyramid algorithm 

and the modified grid algorithm are large with the increase of the number of the false stars, while the 

false stars have little impact on the recognition rate of the proposed algorithm. Therefore, the proposed 

algorithm outperforms the pyramid algorithm, the modified grid algorithm, and the LPT algorithm in 

terms of the false stars. 
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(a) (b) 

(c) 

Figure 6. Recognition rate vs. false stars. (a) Recognition rate with 1 false star;  

(b) Recognition rate with 2 false stars; (c) Recognition rate with 3 false stars. 

5.3. Performance of Different Algorithms under Lost Stars 

Some stars in the sky may not be captured by CCD (lost stars) because of the obstruction of other 

spacecraft or the hardware failure of the star sensor. In tests, the observed stars on the simulated stellar 

image are deleted randomly. The observation is meaningless when excessive lost stars are deleted from 

the stellar image. So the number of the lost stars deleted from the stellar image ranges from 1 to 2 in  

this paper. 

Figure 7 shows the statistical results of the recognition rates of the four algorithms for all 6685 

navigation stars with the number of the lost stars ranging from 1 to 2. From the results it can be found 

that the recognition rate of the proposed algorithm decreases from 98.67% to 97.7% when the lost stars 

are deleted without any positional noise. While the recognition rate of the pyramid algorithm decreases 

from 91.59% to 84%, and the modified grid algorithm decreases from 97.4% to 96.8%, and the LPT 

algorithm decreases from 98.67% to 96.27%. The declines of the four algorithms are 0.97%, 7.59%, 
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0.6% and 2.4%, respectively. Based on the analysis results, the pyramid algorithm is sensitive to the 

lost stars. Although the decline of the proposed algorithm is not as good as that of the modified grid 

algorithm, the recognition rate of the proposed algorithm is better than that of the other three algorithms. 

As can be seen by the above description, the proposed algorithm outperforms the pyramid 

algorithm, the modified grid algorithm and the LPT algorithm in terms of the lost stars. 

(a) (b) 

Figure 7. The recognition rates of different algorithm with false stars. (a) Recognition rate 

with 1 lost star; (b) Recognition rate with 2 lost stars. 

5.4. Identification Time and Memory Usage 

The identification time and the memory usage should be taken into account in the practical 

application of the star identification algorithm. The identification times and the memory usages of the 

four star identification algorithms are summarized in Table 1. 

Table 1. Identification time and memory usage of different algorithms. 

Identification Algorithm Max Time/s Min Time/s Average Time/s Database Size 

Pyramid 0.0610 4.0061 ´ 10−4 0.0275 130.57 KB 
M. Grid 0.5886 0.0279 0.3946 7.38 MB 

LPT 0.0811 0.0718 0.0738 665.89 KB 
Proposed algorithm 0.0196 3.3496 ´ 10−4 0.0078 280.72 KB 

The identification time of star identification is measured by the average identification time for the 

3000 simulations. It can be found from the Table 1 that the proposed algorithm is most time-saving 

than the other three algorithms, which has an average identification time of 7.8 ms. In the proposed 

algorithm, the search scope of the matching pattern is constrained by the number of the non-zero 

values in the feature vector, which makes it able to achieve the identification result just with fewer 
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comparisons. In addition, the feature vector of every star pattern is unique in the proposed algorithm, 

and the comparison of every two star pattern is simplified as the comparison of the two feature vectors. 
In the modified grid algorithm, the comparison of two star patterns requires g ´ g logical AND 

operations, and the logical operations increase with the increase of the grid cells. Meanwhile, it needs 

to search the entire feature database to find the best matching pattern. Hence, the modified grid 

algorithm is time-consuming and its average identification time is longest at 0.3946 s. 

The pyramid algorithm utilizes the k-vector approach to find the candidate matching results, which 

has no need to search the entire feature database to find the matching result, so it can accelerate the star 

identification to some extent. 

The LPT algorithm has an average identification time of 73.8 ms, which is larger than that of the 

pyramid algorithm and smaller than that of the modified grid algorithm. The average identification 

time of the LPT algorithm is about 10 times of that of the proposed algorithm. In the Log-Polar 

algorithm, the feature vector needs to be shifted circularly for some time when two feature vectors are 

compared, which is time-consuming. Moreover, it needs to search the entire feature database to find the 

identification result. 

In terms of the memory usage, the modified grid algorithm requires the most memory with a feature 

database of 7.38 MB, which will increase with the increase of the number of grid cells.  

The pyramid algorithm has the smallest feature database among these algorithms, because the 

dimension of its feature vector is lowest compared with the other algorithms. Although the feature 

database of the proposed algorithm is larger than that of the pyramid algorithm, it is acceptable and 

supported by the available hardware. 

From the simulation results, we can make the conclusion that the proposed algorithm outperforms 

the pyramid algorithm, the modified grid algorithm, and the LPT algorithm in terms of positional 

noise, false stars, lost stars, and star recognition time. Despite the fact that the memory requirement  

for the proposed algorithm is more than that of the pyramid algorithm, it is supported by the  

available hardware. 

6. Conclusions 

An autonomous star identification algorithm has been proposed based on the one-dimensional 

vector pattern, in which the feature vector of the star pattern remains unchanged when the stellar image 

rotates. Compared with the pyramid algorithm, the modified grid algorithm, and the LPT algorithm, 

the star identification algorithm proposed in this paper has advantages of high recognition accuracy 

and good noise resistance ability. Moreover, the computational complexity of the proposed algorithm 

is lower than that of the other three star identification algorithms. The innovations of the proposed 

algorithm mainly include: 

(1) Compared with the 0–1 string in the modified grid algorithm, the one-dimensional vector 

pattern can fully express the space geometry information of the stars observed in FOV, which 

makes a great contribution to star identification. 

(2) The feature vector of the same observed star remains unchanged when the stellar image rotates, 

so the comparison of every two star pattern is simplified as the comparison of the two feature 

vectors, which can accelerate the speed of star identification. 
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(3) The utility of the number of the non-zero value in the feature vector can narrow down the 

search scope of the matching pattern, which can make it possible to achieve the matching result 

quickly in the feature database, instead of searching the entire feature database. 

(4) Under the same conditions, the performance of the proposed algorithm is better than the other 

three star identification algorithms. 

(5) Compared with the other three star identification algorithms, the proposed algorithm is simple 

and easy to replicate. 

We have clearly validated the robustness and the effectiveness of the proposed algorithm by 

analyzing the experimental results and comparing the proposed algorithm with the other three star 

identification algorithms. Experiment results show that the proposed algorithm outperforms the 

pyramid algorithm, the modified grid algorithm, and the LPT algorithm in terms of identification time, 

recognition accuracy, and robustness. Moreover, the computational complexity of the proposed 

algorithm is lower than that of the other three algorithms. The proposed algorithm can promote  

the efficiency of the attitude determination for the spacecraft, which will expand the application of  

star sensors. 
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